港湾の施設の新しい点検技術 カタログ (案)

本カタログ(案)は、国が定めた標準項目に対する性能値等について、開発者から提出された内容をカタログとしてとりまとめたものです。

令和5年3月現在

国土交通省港 湾 局

はじめに

本カタログは、掲載された技術の評価を国が行ったものではないが、利用者の参考となるよう、国が定めた標準項目*1に対する性能値*2等について、開発者から提出された内容をカタログとしてとりまとめたものである。

今後も引続き公募を実施し、掲載する技術を増やすとともに、今後の技術開発の進展等に 応じ、カタログに掲載した技術は適宜見直しを行う予定としている。

また、点検診断で本カタログに記載のない技術について検討する場合にあっても、本カタログに掲載された標準項目の性能値を求め、目的に適合するかを確認することで活用できるものと考えられる。

なお、掲載された技術の作業効率や経済性などの値は、種々の条件により変わるものであり、活用に際しては、技術の詳細も含め開発者に直接問い合わせ願いたい。

- ※1 点検技術の諸元や性能として表示すべき標準的な項目
- ※2 カタログにおいて、標準項目に対する性能を表示したもの

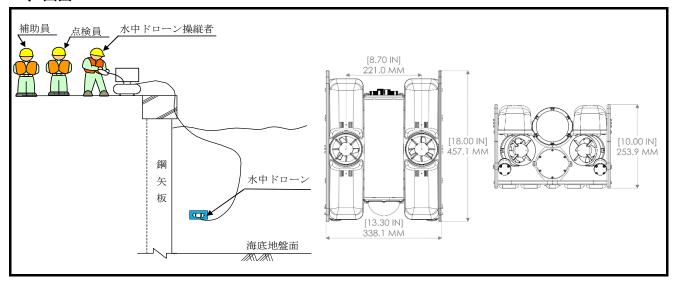
目次

機械点検技術

海中部の点検

水中ドローンを使用した海洋構造物の点検・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
水中3Dスキャナーによる水中構造物の形状把握システム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
自律型無人潜水機AUVを使用した外郭施設(防波堤・護岸)の水中部可視化技術・・・・	1 2
ペトロラタム被覆用防食効果判定センサ「ペトモニ」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1 7
スキャニングソナーとレーザースキャナによる3次元計測技術・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2 1
陸上から行う矢板式岸壁等点検支援ロボット視る・診る・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2 6
<u>海上部の点検</u>	
パノラマカメラを用いた構造物調査点検システム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3 1
i-Boat(無線LANボート)を用いた港湾構造物の点検・診断システム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3 5
光波測量機「KUMONOS」及び高解像度カメラを組み合わせた高精度点検システム「シン・クモノス」	4 0
ジンバルカメラ搭載水上ドローンによる港湾構造物下面の点検・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4 5
<u>陸上部の点検</u>	
AIや三次元点群モデルを活用した、港湾施設の定期点検支援技術・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5 0
特殊地中レーダを用いた岸壁エプロン下の空洞探査システム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5 7
電源・配線が不要な港湾施設の遠隔モニタリングシステム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6 2

光ファイバーセンサーを使用した港湾外郭、係留構造物の変状計測技術・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6 7
自動飛行ドローンを用いた港湾クレーンの点検・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
UAVへりによる港湾施設の3次元形状測量システム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7 8
システム技術	
港湾施設の維持管理支援システム(CASPort) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8 3
スマートフォンによる港湾施設の維持管理システム ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8 9
港湾構造物の維持管理支援システム「SAMSWING(サムシング)」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9 5
三菱電機点検サポートサービスInsBuddy ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1 0 1


	1					1112
	/ <u>L</u>	<u>150%</u>		現地点検作業:人員		掛)と比較
	作業効率	(当技術/従来	技術)	当技術(標準値):1,		=II- * -/
				従来技術:1,200㎡	/日(潜水目視	調査)
特徴	経済性	67万円/1,20	ากฑ์	劣化箇所の図化等 <i>の</i>)内業も今める	
13.5%		01731 3/ 1,20	<u> </u>	为10回//100回1040		•
	(独自で設定した項目	∄)				
	点検の省力を	機材人員の省	力化を図	図ることができる。		
		<u> 0 </u> レタント株式会	51 ++ -4	4≒ ±π		
連絡先等						
	内藤輝 Tel:	03-5978-3377	E-mai	il: honsha427@port.c	o.jp	
技術紹介URL(パンフレット等)				_		
	水中部にある	る海洋構造物の	変状把語	握は、これまで主に潜	水士による目	目視調査によって実施
	されてきた。ス	ҟ技術は水中ド	ローン	を使用して、潜水士の	代わりに、陸	を上から海洋構造物の
技術概要	定期点検を実施	拖するものであ	る。ま	た、水中ドローンに音	響測深機を誇	2置して、鋼矢板の腐
1文的例数	食を点検しなれ	がら、海底地盤	の水深	を測定することにより	、矢板式構造	造物等の吸出しの早期
	発見を実現する	る技術である。	潜水士:	では困難な大水深や狭	隘な海中部で	での点検が可能であ
	ప .					
活用状況写真	スラスター モニター用 カメラ 高性能力メラ (GoPro) LED照明					
				当社!	実施範囲	
活用フロー	i	中ドローン 倹を実施 外業		・劣化箇所の図化 ・劣化度判定	:	維持管理計画書 の作成 内業
点検機械		0				
当社の実施 操縦者		0				
75 m (=+)/				_		
文的未奶		0		0		\triangle
○	点検機械、操縦者を含め当社にて点検業務を受託する。2回目以降も同様の利用形態。				様の利用形態。	
	△:当社への委託でも可能					

対象	対象施設等						
	対象施設		施設	外郭施設	係留施設		その他
	刈			0	()	
	構造形式			重力式・矢板式・その他	重力式・矢	板式・桟橋	
	点検部位・点検内容						
概算	費用	約67万円/1,200㎡ (諸経費を含む) (内業:19万円、外業:48万円) 点検数量増加に伴う費用の削減 あり					加に伴う費用の削減
点検	実績	本				秋田県	
現有	台数	1台 基地住所 千葉県白井市					
追加	機能等の開発予定	なし					
特許	・NETIS、関連論文等	論文:西舘忍ほか,水中ドローンを使用した海洋構造物の調査事例の紹介,第75回年次学術講演会,第75回年次学術講演会,p.VI-296,2020.					

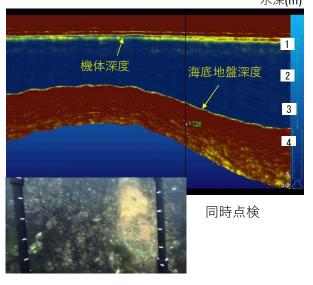
外形寸法・重量	0.46m×0.34m×0.25m (全長×全幅×全高) 重量:10.0kg 1.0m/s						
(独自で設定した項目) 水中移動速度							
項目	適用条件	補足事項					
現場条件	•						
周辺条件	海水が濁っていないこと	海水が濁っている場合、点検精度に難点あり					
作業範囲	見通しが良い状態で100m程度	操縦者が浮上した状態で視認できる範囲					
安全面への配慮	ケーブルがからまないように補助員を配置	-					
現地への運搬方法	普通車で運搬、人力で着水	-					
気象海象条件	波高1.0m以下 流速1.0m/s以下	-					
(独自で設定した項目)	-	-					
作業・運用体制、留意事項	1						
作業体制 (必要人員・構成)	内業:1名 外業:3名(操縦者1名、補助員1名、点検員1 名)	-					
日当たり作業可能量 (準備等含む作業時間)	約1,800㎡/日	-					
夜間作業の可否	不可	-					
利用形態 (リース等の入手性)	リース不可	-					
関係機関への手続きの必要性	海上保安部に申請が必要	-					
解析ソフトの有無と必要作業 外注及び費用・期間等	不要	-					
(独自で設定した項目)	-	-					
パソコン等動作環境	•						
0 S	Windows8.1以降						
メモリ	8GB 1867MHz DDR3 以上						
必要なソフトウェア	QGroundControl						

3. 運動性能・計測性能

	項目	性能	補足事項
運動	性能		
	構造物近傍での安定性	流速が速い場合、安定性が悪い	-
	狭小進入可能性能	静穏の場合は1×1m程度	-
	最大稼働範囲	ケーブル長150mの範囲	-
	連続稼働時間	2~3時間程度	-
	自動制御の有無	姿勢自動制御あり	-
	(独自で設定した項目) 水深による制限	最大水深100m	-
計測	性能		
	計測精度	孔食幅1cm程度	-
	位置精度	-	水中部にポール等を設置し、目視にて位置を 確認
	色識別性能	有り	-
	(独自で設定した項目)	1080p デジタル	_
	カメラ仕様	Goproカメラも設置可能	_
その	他		
	操作に必要な資格の有無	なし	-

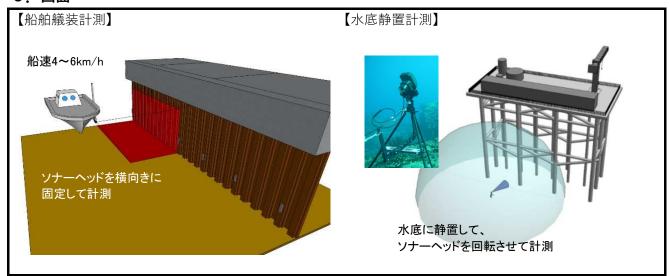
5. 点検概要図、状況写真

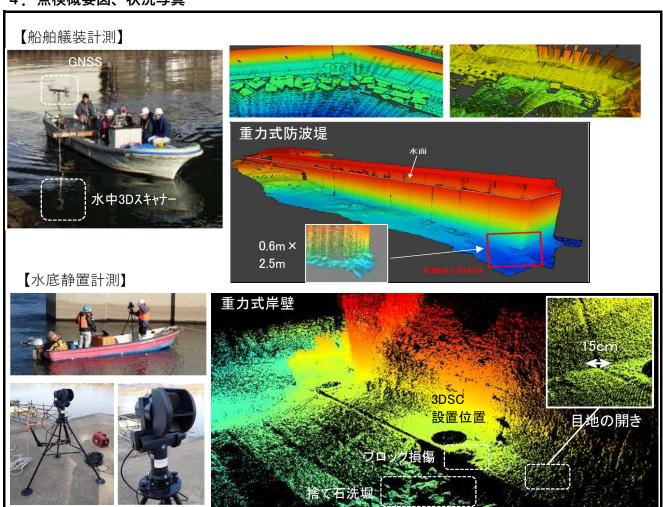
音響測深機による海底地盤の点検



鋼矢板の腐食と吸出しによる海底地盤の水深 の変化を同時に点検することで、従来技術に 比べ吸出しの早期発見が可能となる。

桟橋鋼管杭の陽極調査


水深(m)

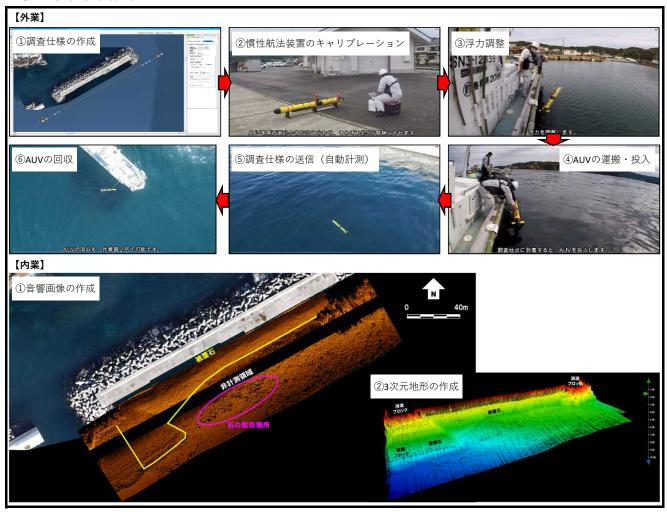


			程度 E. M. C. M			
	作業効率	船舶艤装計測 8,333 水底設置計測 208% (当技術/従来技術)				
特徴	経済性	船舶艤装計測 230万円/10,000 水底設置計測 390万円/10,000	ー 水深10m×護岸延長1,000m=10,000㎡を対象			
	(独自で設定した項	マルグヒームよりもた	ー 別波数が高いため点群密度が高く、複雑な形状や10cm程度の変 ・横向きに発信することで水面付近の構造物の計測が可能。			
連絡先等			環境調査事業部 技術開発室 nail:ftarou@ideacon.co.jp			
技術紹介URL(パンフレット等) https://ideac	on.jp/technology/inet/	/vol48/vol48_alls.pdf			
技術概要	として計測す と組み合わせ で航行しなが 飛躍的に向上 き(重機不要 10cm以上の 気防食工の摩 対象外となる	水中3Dスキャナー(以下3DSC)は水中構造物や水底形状を高精度・高密度な点群データとして計測する音響機器で、本来は水底に静置した状態で計測する。当社では動揺センサーと組み合わせて調査船へ艤装し、航行しながら計測する技術を開発した。本技術により船舶で航行しながらの水中インフラ形状の高精度把握が可能となり、安全性・効率性・経済性が飛躍的に向上した。3DSCは小型軽量のため調査員3名、ワゴン車1台、作業船1隻で運用でき(重機不要)、潜水士では対応できない濁水中や流速2m/secでも使用できる。10cm以上の変状が対象となるため、被覆工のめくれやブロックの散乱、目地の開き、電気防食工の摩耗・欠損、矢板・杭の開孔を効率よく計測可能であるが、クラックや発錆等は対象外となる。				
活用状況写真	【船舶艤装言	【船舶艤装計測】				
活用フロー	当社実施範囲 ・構造物の3Dモデル化・劣化箇所の図化・劣化箇所の図化・劣化度判定 外業 内業					
点検機械	1	0				
当社の実施 操縦者		0				
範囲(該当 受託業務		0	0			
(一) (備考		 縦者を含め当社にて点				

対象	施設等					
	対象施設	水均	施設	外郭施設	係留施設	その他
	刈 家	0		0	0	0
	構造形式			重力式・矢板式	重力式・矢板式・桟橋	自然共生施設、海底ケーブル、 洋上風力施設、藻場・サンゴ等
		土砂堆積·	洗堀、大き	さ10cm以上の変状を対象	象とする。桟橋杭や消波	ブロックの背面など
		音波をあて	ることが出	来ない箇所については、	潜水目視等の別の調査	方法で補完することが
	点検部位・点検内容	必要となる	0			
		(ケーソン	開き、被覆	・根固工のめくれ、矢板	・杭開孔、電気防食工活	消耗・欠損、消波工沈
		下・損傷等	:)			
		【船舶艤装	計測】:約1	.10万円/日(最大100,0	00㎡/日)	
			艤	麦・艤装解除で別途130	万円必要	
概算	運	【水底静置	·計測】:約1	.00万円/日(標準2,500	m²/日)	
		(ともに、	計測1日+内	業費用で、諸経費込み。	諸手続き・移動にかか	る費用は含まな
		い。)				
点検	実績	港湾13件(国9件、民間4件):北海道開発局室蘭開発建設部、新潟港湾空港技術調査事務所、伏木富山港湾事務所、千葉港湾事務所、京浜港湾事務所、横浜港湾空港技術調査事務所、和歌山港湾事務所、関門航路事務所、熊本港湾・空17件 港整備事務所 等漁港3件(地方公共団体等3件):静岡県、大分県、長崎県その他の土木構造物26件(国19件、地方公共団体等4件、民間3件):河川事務所、国道事務所、水資源機構 等				
現有	T台数	2台		基地住所	神奈川県横浜市、大阪F 福岡県福岡市のいずれた	
追加	機能等の開発予定	無人ボートに艤装しての計測				
特許	・NETIS、関連論文等	NETIS: KT-180031-A「水中3Dスキャナーによる水中構造物の形状把握システム」 論文: 三上信雄、古殿太郎ほか: 漁港施設の水中部点検の高度化に向けた水中3Dスキャナーの適用に関する検討, 土木学会論文集B3 (海洋開発), Vol.76No.2, p.I_564-I_569, 2020. その他: 第3回インフラメンテナンス大賞優秀賞 日本水環境学会 2019年度技術奨励賞 橋梁定期点検 計測モニタリング技術(橋梁) BR030024-V0020				

	- 空中が行列 - 27cm × 構24cm × 草 ≥ 40cm					
	10kg (水中4kg)					
	船舶艤装計測の場合は時速4~6kmで計測					
	適用条件	補足事項				
	1					
	作業船が航行可能な水深 (0.8m以上)	クローラー式運搬機に搭載して陸上からの計 測も可能				
	船舶艤装計測は水深15m、水底静置は水深 30mまで	水深30m~300mは3DSC搭載のROVで計測 可能				
配慮	通常の船上作業に準じる	-				
搬方法	ワゴン車に全ての機材を積載可能	積み下ろしは人力のみで可能 (重機不要)				
件	波高1m以下	-				
设定した項目)	-	-				
留意事項						
	外業:3名	外業:艤装・艤装解除				
構成)	内業:1名 【船舶艤装計測】	操船、3DSC操作、補助				
	計測(最大):100,000㎡/日(最小10,000㎡/日) 【水底静置計測】 計測(標準):2,500㎡/日	水深10mの垂直構造物を想定				
可否	可能	作業船安全確保のためのライトが必要。昼間 作業が望ましい。				
	リース無し。					
)入手性)	操作、解析を当社で行う。	_				
手続きの必要性	海上保安部への作業許可申請・届出	港湾管理者、港運関係者、漁業者への周知が 必要な場合もある。				
解析ソフトの有無と必要作業 3D点群データ計測・補正・処理・メッシュ 外注及び費用・期間等 化・図化のソフトが必要		1日の計測で得られたデータ(約50GB相 当)の解析に内業1日を想定				
	10cm以上の変状を対象とする。	微小なクラックや発錆・変色、肉厚は対象外				
 環境						
	Windows7以降					
	16GB以上 (点群データ処理は32GB以上、グラフィックボード搭載が望ましい)					
トウェア	成果物の確認には3Dモデルを表示するための ビューワーソフトは成果物と合わせて納品(脚					
	137111 = 10 20111 111	上た項目 船舶艤装計測の場合は時速4~6kmで計測 適用条件 適用条件 作業船が航行可能な水深 (0.8m以上) 船舶艤装計測は水深15m、水底静置は水深 30mまで 通常の船上作業に準じる フゴン車に全ての機材を積載可能 投定した項目 一				

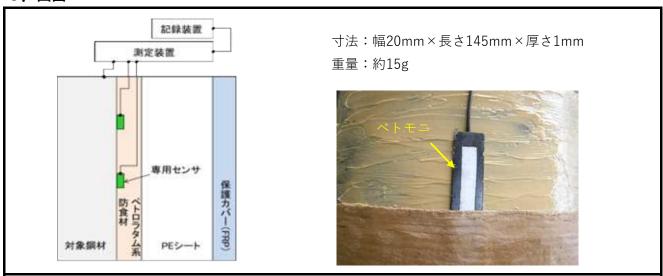
		作業効率	41,600% (当技術/従来技術	当技術 (標準値)	員目視(標準歩掛)と比較 : 500,000㎡/日 ⁻ /日(潜水目視調査)	
特徴		経済性	<u>10円/㎡</u>		m程度の港内水域において、潮流や船 よる水面障害等の影響がない。	
	-	(独自で設定した項目) 再現性	毎回、同一のルー 変化を確実かつ効		させることができるため、経時・経年	
				術本部 岡山本店		
連絡先等		災害リスク研究セ 大木茂之 Tel:(グルーフ E-mail:oomoto-shi@ej	-hds co in	
 技術紹介URL(パンフ		https://www.eje			пиз.со.јр	
技術概要	:	自律型無人潜水機AUV(Autonomous Underwater Vehicle)は、コンピュータと各種センサー類を搭載した水中ロボットである。予め設定したルート(コース・深度)をAUVに自律航行させ、搭載したサイドスキャンソナーで外郭施設(防波堤・護岸)の水中部(被覆・根固・消波・基礎工等、海底地盤)の音響画像と3次元地形データを取得する。 人力で持ち運び可能で、水中の調査を無人で実行。AUV本体と各種センサー類がパッケージ化されているため、艤装に伴う労力はほぼゼロ。				
活用状況写真						
活用フロー		AUVによ 点検の実	る施 ・3	当社実施筆 響画像の作成 欠元地形の作成 中部の変状確認等	・維持管理計画 ・補修設計	
	A LAL I I	i	外業	内業	内業	
	乗機械 イン・	0				
┃ ┃当社の実施 ──	従者 七業務	0		0	Δ	
範囲(該当			- W 1 ~ cp # + 2			
備病	号 2	外業、内業ともに当社で実施する。 2回目以降も同様の実施体制であり、点検機械のリース等は不可である。 △:当社への委託でも可能				

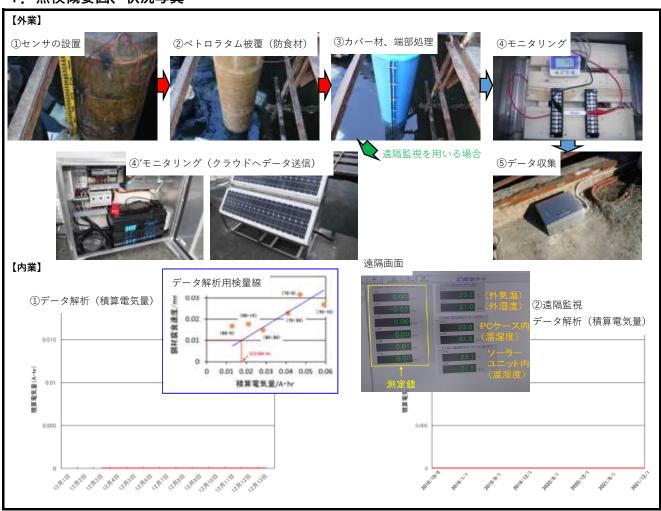

対象施設等							
	対象施設	水域施設		外郭施設	係留施設		その他
	刈 乳他政	()	0			
	構造形式			重力式			
	点検部位・点検内容	水中部(被	覆・根固・	消波・基礎工等、海底地	盤)の変状		
概算	費用		約500万円/500,000㎡(諸経費込み) - (外業:300万円、内業:200万円)				
点検	実績	7件	港湾2件(国2件):広島港湾空港技術調査事務所、境港湾・空港整備事務所 漁港1件(地方公共団体等1件):岡山市 その他土木構造物4件(地方公共団体等3件、民間1件):島根県松江水産事務 所、島根県浜田水産事務所、島根県隠岐支庁水産局、松村興産(株)				
現有	台数	1台 基地住所 岡山県岡山市					
追加	機能等の開発予定	位置精度の高いネットワーク型のGNSSを搭載					
特許	・NETIS、関連論文等	論文:大本茂之ほか,貯水池の堆砂状況調査に対するAUV導入の有効性検証,令和2年度建設コンサルタント業務研究発表会論文集,Vol.20,p.5-8, 2020.					

外形寸法・重量		全長2.3m、重量40kg					
	^{独自で設定した項目)} 位置計測装置	AUV本体の位置を水中で測位するために、慣性航法装置とドップラー速度計ADCPによるハイブリッド位置計測装置を搭載					
	項目	適用条件	補足事項				
現場条件	=						
周辺	卫条件	水面・水中に漂流物が少ないこと	プロペラに漂流物が巻付くと、航行不能となる可能性があるため、漂流物を回避して航行する必要がある。				
作業	美範囲	自律航行なので制限無し	ただし、AUVの手動制御(緊急停止等)の通 信範囲:200m程度(経験値)				
安全	全面への配慮	航行船舶が少ないこと	AUVとの衝突回避				
現地	也への運搬方法	調査船に積み込んで現場海域へ運搬 (陸上は 商用車で運搬)	調査船は5t未満の漁船等を使用				
気象	快海象条件	波浪(1.0m未満)や流れ(0.5m/s未満)の影響が 小さいこと	AUVの潜航により波浪の影響を軽減可能				
	(独自で設定した項目)	-	-				
作業・運	用体制、留意事項	,					
	美体制 (要人員・構成)	外業:2名 内業:1名	-				
	台たり作業可能量 備等含む作業時間)	500,000㎡/日(標準値)	潜水目視調査と比較して約420倍の効率を実 現				
夜間	間作業の可否	可能	航海灯(三色灯)を装備				
	月形態 ース等の入手性)	リース不可 調査・解析は当社で実施	-				
	機関への手続きの必要性	海上保安部への作業許可申請等の手続	-				
	ソフトの有無と必要作業 注及び費用・期間等	音響画像の補正・結合、3次元地形データの補 正を解析ソフトで実施	費用は200万円。解析期間は音響画像で2 日、3次元地形データで3日(2GB相当)				
	(独自で設定した項目)	-	-				
パソコン	·等動作環境						
0 S		Windows10					
メモ	- リ	8GB以上					
必要	長なソフトウェア	Adobe Acrobat Reader、DocuWorks Viewer					

3. 運動性能・計測性能

	項目	性能	補足事項		
運動	性能				
	構造物近傍での安定性	自律航行中は針路・姿勢を自動制御	-		
	狭小進入可能性能	幅5m程度の間隙であれば自律航行で進入可能	前方障害物センサーを装備		
	最大稼働範囲	-	自律航行なので制限無し		
	連続稼働時間	6時間	-		
	自動制御の有無	航行〜データ取得まで全て自動制御	事前に調査仕様(コース・深度、データ取得 位置等)を設定		
	(独自で設定した項目) 水深による制限	水深1m以上	最大潜航深度は100m		
計測	性能				
	計測精度	±0.25m(平均值)	-		
	位置精度	2m以内	潜航時には精度低下(誤差:潜航深度× 0.3%)		
	色識別性能	無し	-		
	(独自で設定した項目) 高分解能	計測対象の分解能6mm	周波数1,600kHzのサイドスキャンソナーを 搭載		
その	他				
	操作に必要な資格の有無	なし(当社で実施)	-		




ペトロラタム被覆用防食効果判定センサ「ペトモニ」

			作業効率	1,600% (従来技術と比	· <i>ベt</i> -効率)	現地点検作業:従来技術との比較 当技術:0.5時間/箇所(現地モニタリング:陸上) 従来技術:8時間/箇所(開放点検:潜水)		
特徴			経済性	経済性 42万円/箇所 センサ+モニタリング装置初期費用(27万円/ 検費用(15万円/箇所)				初期費用(27万円/箇所)+点
			(独自で設定した項目) 点検頻度	センサ等の設定確保にも資す		くを要さず地上から <i>の</i>	遠隔鹽	監視が適宜可能となり、安全性
連絡	生		株式会社ナカボー	- テック 事詞	業開発本部	事業開発部 開	発二調	H T
) 建剂	九 寸		星野雅彦 Tel:(03-5541-582	7 E-mail:	: m.hoshino@nak	aboht	ec.co.jp
技術組	紹介URL(パ)	ンフレット等)				-		
技術	概要		よる開放点検を見て正確な評価は間に形成される匠で陸上から鋼材の 当技術は、事前均腐食速度の関係	と施していた。 困難であった。 可路電流を検知 の防食状態を対 がに試験体で行 を性を整理し、 るものであり、	そのため、 当技術は、 印することで 定量的かつ? 导られる回記 これと現り	開放点検を行う 防食材の劣化にで、潜水作業を伴 対率的に評価可能 路電流の積算電気 地での回路電流と	ま伴うな量をでう開せと照	行い、必要に応じて潜水士に 方食材内部の鋼材状態につい 好水浸入によりセンサと鋼材 放点検を必要とせず、非破壊 ソサである。 センサ未設置試験体の鋼材平 のし合わせることで鋼材の防 ととで現地に行くことなく評
活用状況写真					\$\text{\ti}\text{\texi{\text{\tex{\tex		t	
活用フロー			・センサ設置 ・点検(デ- 収)の実施		データ解析解析結果の	当社実施範囲 f Dフィードバック 内業		・維持管理 ・補修計画立案(+助 言) 内業
		点検機械	0					
	NAL & 축꾸	操縦者						
	当社の実施	受託業務	0			0		Δ
	範囲(該当○)	備考	外業、内業ともは 測定装置等の装置 △:当社への委託	置一式はリース				

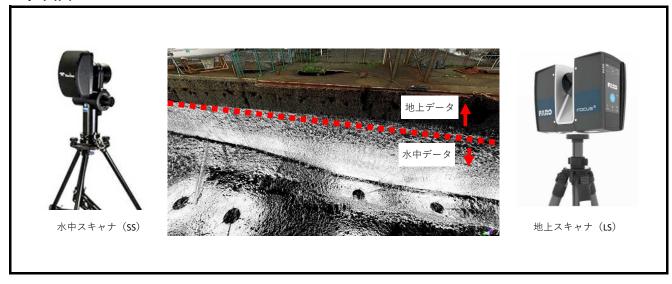
対象	対象施設等								
	対象施設	水域施設		外郭施設	係留:	施設	その他		
	刈			0)			
	構造形式			矢板式	矢板式	・桟橋			
	点検部位・点検内容	飛沫帯〜海	水中にかけて	て施工されるペトロラタ	ム被覆の防1	食 状態			
概算費用			約42万円/箇所(諸経費込み) - (外業:27万円、内業:15万円)						
点検	実績	0件	試験的な実	績のみ。					
現有	台数	5個(測定装置等) 基地住所 埼玉県上尾市							
追加	機能等の開発予定								
特許:特願2018-113393(鋼構造物の防食状態監視システム) 特願2018-113394(鋼構造物の腐食検知装置) 論文:星野雅彦ほか,ペトロラタム被覆工法の防食効果持続性評価手法の構築,土木学会年次学術講 講演概要集、Vol.73、VI-240、2018.						土木学会年次学術講演会			

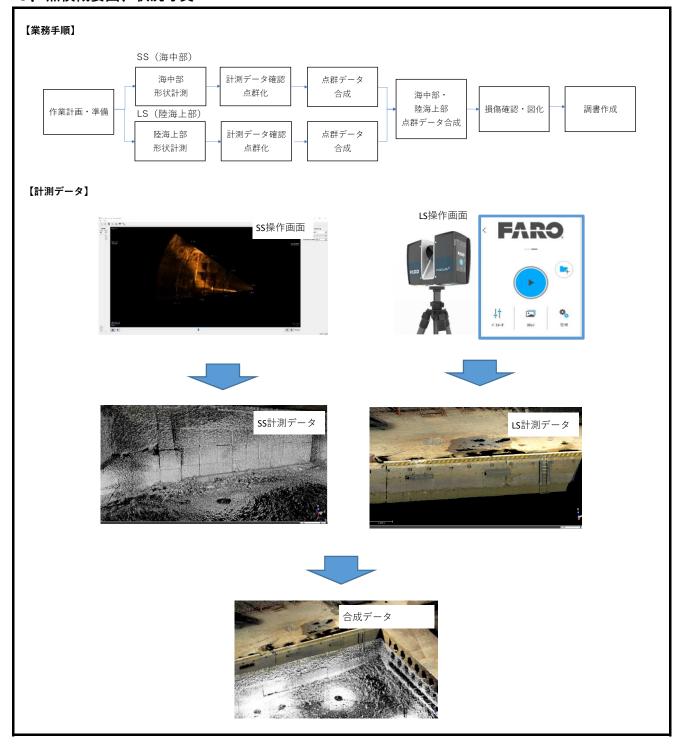
外形寸法・重量		寸法:幅20mm×長さ145mm×厚さ1mm、重量:約15g					
	(独自で設定した項目) 安定供給	レアメタルや半導体などの特殊材料を要さず、安定した供給が可能。					
	項目	適用条件	補足事項				
現場	条件						
	周辺条件	鋼材表面に浮き錆や貝類が付着していないこと	ペトロラタム被覆施工時の鋼材表面清掃にともない、前処理は必要なし				
	作業範囲	制限なし	ペトロラタム被覆の施工が可能な範囲であれば制限なし				
	安全面への配慮	必要なし	-				
	現地への運搬方法	現地へ郵送または作業車で運搬	-				
	気象海象条件	なし	ペトロラタム被覆の施工条件による(風速 10m/s以下、波高1.0m以下、視程1,000m以 上、潮流1ノット以下)				
	(独自で設定した項目)	-	-				
作業	・運用体制、留意事項	1					
	作業体制 (必要人員・構成)	設置作業:外業5名、内業1名 点検作業:外業2名、内業1名	初期設置時:外業は潜水業者4名+当社1名 点検時:安全上、外業は2人体制				
	日当たり作業可能量 (準備等含む作業時間)	設置作業:3箇所/日、1箇所/日(初期設定) 点検作業:16箇所/日	潜水調査と比較して高効率を実現				
	夜間作業の可否	設置作業、点検作業ともに不可	安全上、昼間に実施				
	利用形態	リース不可、当社で実施	-				
	(リース等の入手性)	(設置作業は当社への再委託でも可能)					
	関係機関への手続きの必要性	設置時:海上保安部への作業許可申請等の手続	点検は遠隔監視も可能なため申請手続き不要				
	解析ソフトの有無と必要作業 外注及び費用・期間等	汎用ソフト(EXCEL)で可能	自社で解析可能				
	(独自で設定した項目) 計測精度	±0.01mV(平均値)	電圧測定時(データロガーの精度に依存)				
パソ	コン等動作環境						
	0 S	Windows10					
	メモリ	8GB以上					
	必要なソフトウェア	Excel、Adobe Acrobat Reader					

技術名

スキャニングソナーとレーザースキャナによる3次元計測技術

		作業効率	(当技術/従来技術)	SS: 当技術(標準係 従来技術: 1,20 LS: 当技術(標準係	00㎡/日(潜水目視調 直):3,000㎡/日	査)			
特徴		経済性	<u>海中部(SS):</u> 120万円/2,500㎡ <u>陸海上部(LS):</u> 60万円/3,000㎡	海中及び陸海上の3.	次元計測と成果作成ま	までの概算費用。			
		(独自で設定した項目) 再現性	(独自で設定した項目) 3次元計測のため、次回以降の計測結果との比較により、面的な変状が把握可能で再現性 ある。また、補修工事等に計測データを活用することができる。						
先等				ail: miyamoto@ka	ankou.co.jp				
紹介URL(パン	ンフレット等)			edyne-blueview/					
概要		施設を3次元計測 設の形状をシーム	する技術。護岸や岸壁 ムレスな3次元データと	といった海中部・海 して取り扱うこと <i>た</i>	毎上部・陸上部にま ができ、コンクリー	たがる港湾施			
状況写真		SS設置状況	SS設置状況		LS設置状況				
7.0		i	・3次元地形	の作成 ドの作成 変状確認等	・維持管理計・補修設計				
<i>∕</i> H		l	_ 外業			内業			
	点検機械	0							
当社の実施									
範囲(該当		0		O					
()	備考								
	先等 紹介URL (パン 可 可 で 変 で の で の で の で が 当 が も の に う に う に う に う に う に う に う に う に う に	先等 紹介URL (パンフレット等) 概要 フロー 点検機械 操者 受託業務 ())	経済性 (独自で設定した項目) 再現性 クモノスコーポル 宮本 彬彦 Tel SS: https://ww LS: https://ww はS: https://ww スキャニングン 施設を3次元計測 設の形状をシーク 傷や鋼材の孔食、 SS設置状況 ボ況写真 (法検機械) () () () () () () () () () () () () ((当技術/従来技術)	(当技術/従来技術)			

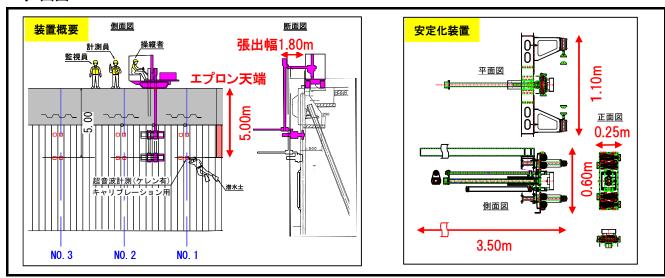

対象	施設等						
	対象施設	水域	施設	外郭施設	係留施設		その他
	刘敦旭 政			0	0		
	構造形式			重力式・矢板式	重力式・矢板	式・桟橋	
	点検部位・点検内容	海中部(被	覆・消波・	基礎工等、海底地盤)の	変状、陸海上	部の変状。	
概算	費用	陸海上部(万円/日(2,500㎡) 万円/日(3,000㎡) ,)		替水士による 合は別途。	る設置作業が必要な
点検	実績	0件			-		
現有台数		1台		基地住所	大阪府箕面市		
追加	型加機能等の開発予定 なし なし						
点検支援技術性能カタログ(国土交通省道路局) 特許・NETIS、関連論文等							

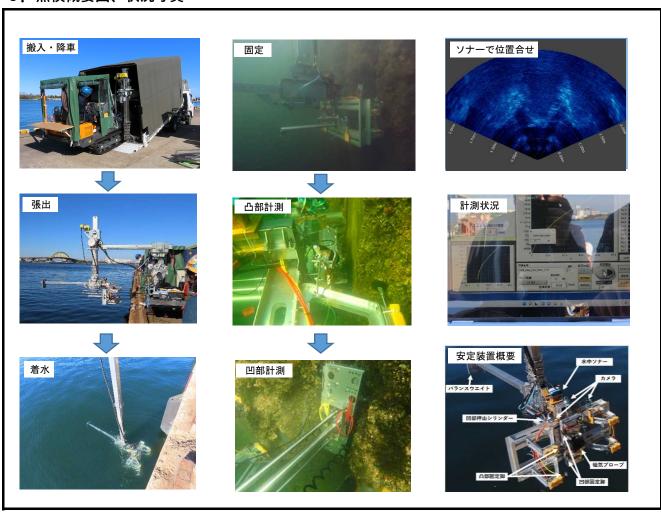

外形	寸法・重量	SS(海中部):最大外形寸法(高さ21.5cm×帆 LS(陸海上部):最大外形寸法(高さ18.3cm×						
	(独自で設定した項目) 計測装置	SSは海中部をソナーにより、LSは陸海上部をノンプリズムレーザーにより対象物を3次元計測する。						
	項目	適用条件	補足事項					
現場	条件							
	周辺条件	SS:機器を海中に投入する作業床が必要 LS:機器を安定に設置できる地面が必要	計測は地上部から行うため、作業できる場所が必要になる。					
	作業範囲	SS:水深30m以内	海底形状によりSSの三脚設置が困難な場合 は潜水士による機器設置が必要					
	安全面への配慮	機器周辺を重機や車両が往来しないこと。	計測時(LSは約8分程度)は移動不可のた め。					
	現地への運搬方法	商用車に積み込み運搬する。地上からの計測 が困難な場合は小型船舶を使用する。	SS:海中投入の調査船は5t未満の漁船等を 使用					
	気象海象条件	SS:波浪(1.0m未満)や流れ(2.0m/s未満)の影響が小さいこと LS:雨天等で対象物が濡れている場合、計測精度が低下。	-					
	(独自で設定した項目) 計測範囲	SS:機器から15m以内 LS:機器から350m以内	-					
作業	・運用体制、留意事項	1						
	作業体制	外業:SS2名、LS2名	SS:調査船使用時は操船者が別途必要 潜水士が機器設置する場合は別途必要					
	(必要人員・構成)	内業:SS、LSともに1名						
	日当たり作業可能量	SS:2,500㎡/日(標準値)	人員目視と比較し、海中部は約2.1倍、陸海					
	(準備等含む作業時間)	LS:3,000㎡/日(標準値)	上部は約2.7倍の効率を実現					
	夜間作業の可否	可能	安全確保のための照明が必要。 LS:カラーデータ取得の場合、照明が必須					
	利用形態	SS等:リース不可						
	(リース等の入手性)	LS:リース可能	-					
	関係機関への手続きの必要性	海上保安部への作業許可申請等の手続	-					
	解析ソフトの有無と必要作業 外注及び費用・期間等	音響画像の補正・結合、3次元地形データの補 正を解析ソフトで実施	データ合成、損傷図作成業務:60万円 (データ容量10GB程度)					
	(独自で設定した項目) 海中計測条件	SS:濁った海中での計測が可能。	気泡や土砂の浮遊がないこと。					
パソ	コン等動作環境							
	0 S	Windows10						
	メモリ	32GB以上						
	必要なソフトウェア	点群ビューワーソフト、CADソフト						

3. 計測性能

	項目	性能	補足事項
計測	性能		
	計測精度	SS:10cm以上の欠損等の変状を抽出可能 LS:1cm以上の亀裂等の変状を抽出可能	-
	位置精度	-	-
	色識別性能	SS:無し LS:有り	-
	(独自で設定した項目) 計測時間	SS:約10分/器械点、LS:約8分/器械点 (器械点:計測器を設置し、360°計測)	LS:1日40器械点計測可能 SS:1日30器械点計測可能
その	他		
	操作に必要な資格の有無	なし(当社で実施)	-

4. 図面

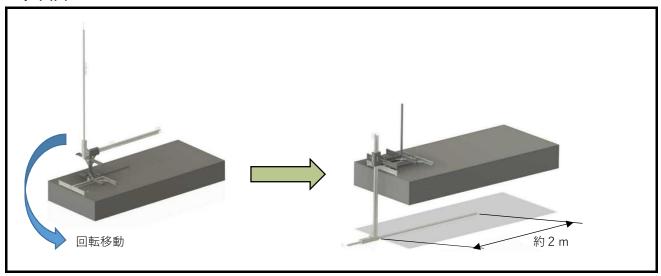

			作業効率	160% (当技術/従来技術)		現地点検作業:人員目視 当技術(標準値):80箇 従来技術:50箇所/日(清	所/日		
特徴			経済性	8,300円/箇所		算出条件:400箇所を対象 参考:従来技術では約16		· -	
				これまでの潜水作業時間が大きく削減される。従来の潜水作業時間を6時間/日とした場合、本技術は1現場当たりの点検開始から1時間程度の作業でよい。 点検の省力化 この作業は磁気プローブの1現場ごとの電磁気特性調査にかかる時間である。					
連絡先等			ジビル調査設計株式会社 調査部 福田 英徳 Tel:0776-23-7155 E-mail:fukuda@zivil.co.jp						
技術網	紹介URL(パ:	ンフレット等)	https://www.eje	ec.ej-hds.co.jp/cer	nter_g	roup2_2/			
技術	概要		本技術は水中鋼材部の肉厚計測のための従来技術である潜水士による水中測定の作業を、陸上(岸壁天端)に設置した作業台車(自走式クローラー:以下作業台車という。)から水中に降ろしたロボットアーム(多段式伸縮アーム)で所定の位置の肉厚計測を行う技術である。肉厚計測には既にNETIS登録されている鋼板腐食検査器(NETIS:KK-220042-A:以下検査機器という。)をロボットアーム先端に取り付けた安定化装置に装着して行う。測定時は検査機器を水中の鋼矢板と完全に一体化させ安定姿勢を確保したうえで、検査機器を押し当てて高精度の測定結果を得ることが可能な技術である。						
活用状況写真				機材全景		安定化装置全景		検査機器装着状態	
\(\forall \)	7 .0		鋼矢板肉厚	厚測定を実施		と箇所の図化 と度判定	 	・維持管理 計画書の作成	
活用	活用フロー			外業				内業	
		点検機械		0					
	当社の実施	操縦者		0					
	範囲(該当	受託業務		0		0			
	()	備考		者も含め当社にて点 の利用形態であり		務を受託する。 ♪機械のリースなどは7	可。		

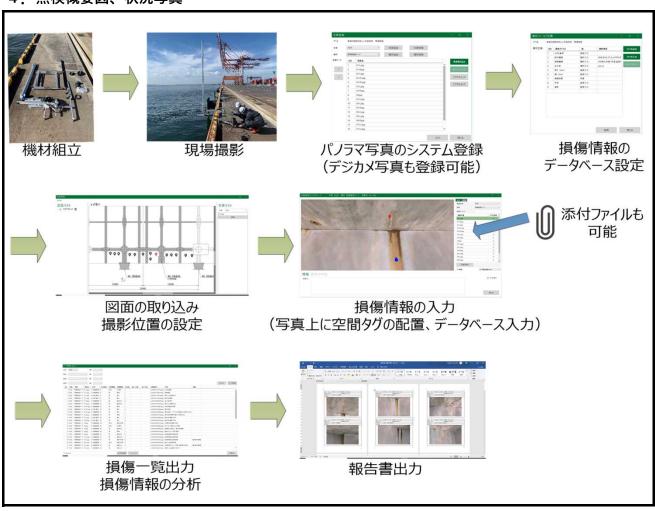

対象	対象施設等								
	対象施設	水域施設		外郭施設	係留施設		その他		
				0		\supset			
	構造形式			矢板式 ※作業台車の搬入が可能 な場所に限る	矢板式				
	点検部位・点検内容	水中部の鋼矢板の肉厚測定					'		
概算費用		約330万円/400箇所(諸経費込み) - (外業:290万円、内業:40万円)							
点検	実績	0件		-					
現有台数		1台		基地住所	福井県福井市				
追加	機能等の開発予定	・エプロン下-13.0mまで対応可とする(詳細定期点検診断に対応) ・岸壁など水中構造物可視化に伴う3D音響スキャナ計測を可能とする							
特許	・NETIS、関連論文等	特許出願中							

外形寸法・重量 全長3.2m、重量2,650kg (クローラ台車含む) 全長3.2m、重量2,650kg (クローラ台車含む) 検査機器は微細な可動に対して測定不可となる精細な機器である。検査機器の測定させるため本装置を開発して測定値の精度を向上させた。 項目 適用条件 補足事項 現場条件 作業箇所に作業台車の搬入及び侵入が可能。 荷役作業がないこと 別定域海中に漁網および係船ロープその他障害物がないこと に支障がないこと(幅5.0m・高さ) 学戒船の配置、作業員の救命胴衣着用、岸壁から海面へのロープ梯子、救命用浮輪の装備 コープ・シー・ コーダーで運搬 当車両が侵入できない場合は作業して侵入できれば可 気象海象条件 波高0.7m以上、風速7m以上は測定不可 -	台車の走行		
安定化装置 定させるため本装置を開発して測定値の精度を向上させた。 項目 適用条件 補足事項 現場条件	台車の走行		
現場条件 周辺条件 作業箇所に作業台車の搬入及び侵入が可能。 荷役作業がないこと 削定域海中に漁網および係船ロープその他障 岸壁エプロン海側延長方向が作業 (で支障がないこと) 「大変に支障がないこと」 「大変に支障がないこと」 「大変に大変に大変にない。」 「大変に大変にない。」 「大変に大変にない。」 「大変に大変にない。」 「大変に大変にない。」 「大変に大変にない。」 「大変に大変に大変により、一定では、大変に対して、大変に対している。」 「大変に対している。」 「大変に対し、対している。」 「大変に対している。」 「大変にないないないる。」 「大変に対している。」 「大変に対している。」 「大変に対している。」 「大変に対している。」 「大変に対しないる。」 「大変に対している。」 「大変に対している。」 「大変に対している。」 「大変にないる。」 「大変にないないる。」 「大変にないないる。」 「大変にないないる。」 「大変にないないる。」 「大変にないないる。」 「大変にないないる。」 「大変にないないる。」 「大変にないないないないないないないないないないないないないないないないないないない			
周辺条件 作業箇所に作業台車の搬入及び侵入が可能。 荷役作業がないこと			
作業範囲 測定域海中に漁網および係船ロープその他障 岸壁エプロン海側延長方向が作業 に支障がないこと (幅5.0m・高さ) を全面への配慮 警戒船の配置、作業員の救命胴衣着用、岸壁 から海面へのロープ梯子、救命用浮輪の装備 - 3tセルフローダーで運搬 当車両が侵入できない場合は作業 して侵入できれば可			
作業範囲 害物がないこと に支障がないこと(幅5.0m・高さの要素がある) に支障がないこと(幅5.0m・高さの要素がある) に支障がないこと(幅5.0m・高さのを) という では、			
安全面への配慮 - から海面へのロープ梯子、救命用浮輪の装備 - 当車両が侵入できない場合は作業 はて侵入できれば可			
現地への運搬方法 3tセルフローダーで運搬 して侵入できれば可			
「	台車を降ろ		
从高V.III			
(独自で設定した項目) 水質条件 透明度2~3m以下の場合は作業が困難。 ソナーによる位置の特定でセンサ 況確認が困難になるため。	ソナーによる位置の特定でセンサー周辺の状 況確認が困難になるため。		
作業・運用体制、留意事項			
作業体制 外業:2~3名 ロボットオペレータ1名、肉厚測5	定員1名、		
(必要人員・構成) 内業:1名 作業補助員1名、警戒船1名			
日当たり作業可能量 (準備等含む作業時間) 80箇所/日(標準値) 別を想定。 別定箇所が5~10mピッチで連続し 況を想定。	,た現場状		
夜間作業の可否			
利用形態 (リース等の入手性) リース不可 調査・解析は当社で実施			
関係機関への手続きの必要性 海上保安部・港湾管理者への許可手続き -			
解析ソフトの有無と必要作業 外注及び費用・期間等			
版厚の変化、鋼矢板材質(製造メー (独自で設定した項目) 準備工として、肉厚の真値を求めるために 等)の変化がある場合、その都度する 準備工 潜水士によるリファレンス作業が必要 に1回(約1~2時間程度)リファレン 必要	変更箇所毎		
パソコン等動作環境			
O S Windows10			
メモリ 8GB以上			
必要なソフトウェア Excel等			

3. 運動性能・計測性能

	項目	性能	補足事項		
運動	性能				
	構造物近傍での安定性	接近及び離隔又は位置の微移動等の動作を緩速度で実施可能。	測定時の姿勢安定度の確実性が高く測定値の 誤差が少なく高い精度を維持できる。		
	狭小進入可能性能	陸側は岸壁から幅が3.5m、海側(海中含む)は 岸壁から幅が3.5mあれば進入可能	作業台車の方向転換に5.0m四方のスペース が必要		
	最大稼働範囲	岸壁エプロン天端から海底方向に5.0mまで測 定可能	計測地点の海側1.6m、陸側1.0mに施設(浮き や係船柱等)がある場合は計測不可		
	連続稼働時間	-	搭載する検査機器の電源に依存する		
	自動制御の有無	なし	-		
	(独自で設定した項目) 測定方法	準備工以外の測定や作業は、すべて陸上から の遠隔操作で実施する。	-		
計測	性能				
	計測精度	鋼板腐食検査器(SPEC-01:KK-220042-A) の仕様精度、±5%以内を確保できる	水中で検査機器の微細な動きを抑止すること ができる。		
	位置精度	水平鉛直方向とも0.05m以内	-		
	色識別性能	有り	水中カメラにて映像が確認できる		
	(独自で設定した項目) 測定時間	測定時間 約50秒/1箇所	1測線 矢板の上位、下位のそれぞれ凹部、凸部の4点測定における1点当たりの測定時間		
その	他				
	操作に必要な資格の有無	なし(当社で実施)	作業台車操縦者は不整地運搬車の特別教育の 受講者であること		




パノラマカメラを用いた構造物調査点検システム

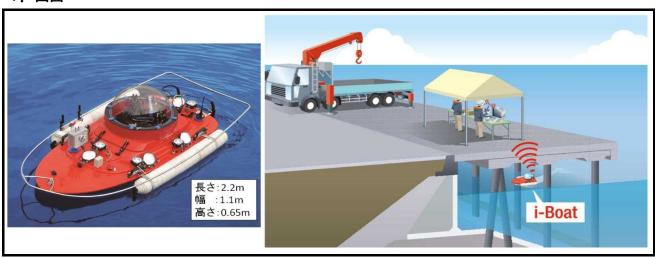
特徴		作業効率	120% (当技術/従来技術)	現地点検作業:人員目視(標準歩掛)と比較 当技術(標準値):1,500㎡/日 従来技術:1,240㎡/日(船上目視調査)			
		経済性	140万円/3,000㎡	成果品作成までの概算費用			
		(独自で設定した項目) 詳細な全周写真により客観的な診断 品質 データの履歴管理により経年劣化の把握が可能					
連絡先等		株式会社アプリコアMSIS 技術開発部					
 技術紹介URL(パン	フレット等)	成田真朗 Tel: 0584-83-1078 E-mail: narita@applicore.co.jp http://www.applicoremsis.co.jp/service/robotics/#inspec					
技術概要		本技術では、現場で撮影したパノラマ写真より机上で点検を行う。LEDを搭載したパノラマカメラを用いるため、暗い場所であっても、影のない鮮明な撮影が可能である。 撮影したパノラマ写真は、点検情報管理システムで管理される。損傷は、写真上に空間タグを配置し、そのタグに損傷データベースを紐づけることで管理される。損傷データベースは、ユーザー側で自由に設計でき、撮影位置はシステムに登録した図面上で管理される。また、任意フォーマットの報告書出力が可能であるため、成果品作成工数を減らすことができる。 鮮明なパノラマ写真を登録した点検情報管理システムは、損傷の確認及び報告書の作成をするだけではなく、施設管理者への状況報告ツール、損傷部位に対する修繕方法の検討ツールとして多様な活用が期待できる。					
活用状況写真							
活用フロー		現場 撮影 外業	パノラマ データ 作成 内第	点検情報入力	当社実施範囲 データベース 出力による 報告書作成 内業		
ŗ	点検機械	0					
当任の実施	^{操縦者}	0	-				
	受託業務	0	0				
	備考	点検機械、操縦者を含め当社にて点検業務を受託する。2回目以降も同様の利用形態であり、点検機械のリース等は今後の検討課題。 △:直営または業者への委託も可能					

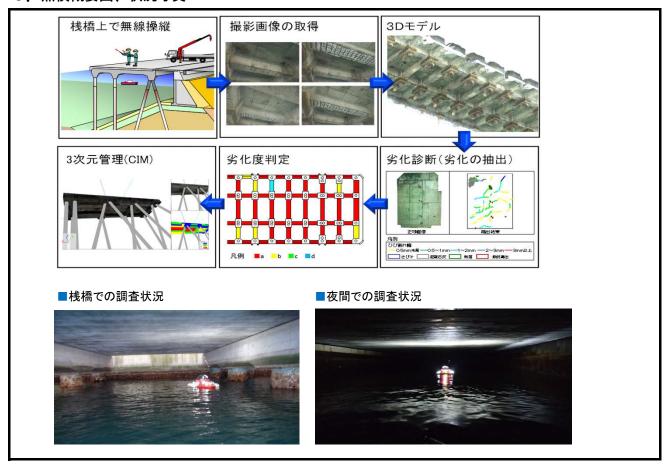
対象	施設等							
	÷+备₩≡₽	水域施設		外郭施設	係留	施設	その他	
	対象施設				()		
	構造形式				桟橋			
	点検部位・点検内容	桟橋下面の劣化度判定						
概算費用		約140万円/3,000㎡(諸経費込み) ※標準撮影枚数100枚の場合				点検数量増加に伴う費用の削減 あり		
点検実績		28件	港湾7件(民間7件): ENEOS(株)、日本製鉄(株)、(株)デンカリノテック 等 その他土木構造物21件(国13件、地方公共団体等3件、民間5件): (株) IHIインフラシステム、(株)シーテック 等 ※国交省発注のBIM・CIM活用工事の採用技術含む					
現有台数		2台		基地住所	岐阜県大垣市			
追加	機能等の開発予定	各種点検アームの開発 画像解析などのソフトウェア開発						
特許	・NETIS、関連論文等	NETIS:CBK-170001-A「構造物点検用パノラマカメラによる構造物点検」						

外形寸法・重量	構造物点検用カメラ:200mm×200mm×110mm(全長×全幅×全高) 狭隘部撮影用カメラ:40mm×90mm×160mm(全長×全幅×全高) -					
(独自で設定した項目)						
項目	適用条件	補足事項				
見場条件						
周辺条件	桟橋上面に撮影機材を展開するスペース(2× 2m程度)が必要	船上からポール撮影も可能				
作業範囲	カメラは2m程度挿入可能	船上撮影の場合は、5m程度挿入可能				
安全面への配慮	-	-				
現地への運搬方法	普通車1台で全ての機材の運搬可能	-				
気象海象条件	雨天・降雨時での撮影は不可	船上撮影の場合は、風速5m/s以下、波高 20cm以下が望ましい。				
(独自で設定した項目)	-	-				
作業・運用体制、留意事項						
作業体制(必要人員・構成)	内業:1名 外業:2~3名	-				
日当たり作業可能量	標準値:1,500㎡/日	撮影標準枚数:100枚(0.3~2.2GB)/日				
(準備等含む作業時間)	※写真1枚の撮影対応面積による	撮影範囲:15~20㎡/枚				
夜間作業の可否	可能	LED照明付きのカメラを使用				
利用形態 (リース等の入手性)	リースなし。パノラマ写真は専用ソフトウェ アに登録して納品	点検情報の入力は、他社でも可能				
関係機関への手続きの必要性	船上撮影の場合は、港湾管理者による水域占 用許可が必要	-				
解析ソフトの有無と必要作業 外注及び費用・期間等	点検情報管理ソフトを成果物に同梱 図面、写真、損傷情報を一元管理	撮影数量によりその費用は変動				
(独自で設定した項目) 計測精度	対物平均解像度(距離1m) カメラ①:1.03 (mm/pix) カメラ②:0.53 (mm/pix) カメラ③:0.38 (mm/pix)	有効解像度 カメラ①: 1800万画素LED照明付 カメラ②: 6000万画素LED照明付 カメラ③: 1億2000万画素				
ペソコン等動作環境	1	1				
0 S	O S Windows10					
メモリ	メモリ 8GB以上を推奨					
必要なソフトウェア	EXCEL					

技術名

i-Boat(無線LANボート)を用いた港湾構造物の点検・診断システム


	作	美効率	0% i技術/従来	技術)	現地点検作業:人員目視 当技術(標準値):3,000 従来技術:1,240㎡/日(新)m²/⊟	
特徴	絡	圣済性 <u>40</u>	6万円/3,0	<u>000㎡</u>	算定条件:基地港からの 計画・機材運搬・現地調 みとする。 成果物として、画像など((BIM/CIM)が追加される。	査・報告書 の点検情報	作成までの諸経費込
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		無線操作によるボートを用いて、効率的に桟橋下面の写真撮影を行うとともに、 自動劣化診断ソフトによる客観的な診断と経年劣化の把握が可能				
連絡先等		五洋建設株式会社 技術研究所 土木技術開発部 水野剣一 Tel: 0287-39-2105 E-mail: kenichi.mizuno@mail.penta-ocean.co.jp					
技術紹介URL(パンフレッ	ィト等) <u>http://</u>	http://www.penta-ocean-int.com/current_research/5444					
技術概要	ボート 大量に ひび割 定を行 橋の劣	桟橋下部に専門技術者が立ち入らずに、効率的に調査することを目的とした技術である。ボートには動揺抑制装置を備えたカメラを搭載し、波浪の影響を低減しながら構造物の画像を大量に効率的な撮影ができる。また、撮影した画像を用いて桟橋下面全体を3Dモデル化し、ひび割れや剥落等の劣化箇所を3Dモデル内に図示するとともに、自動かつ客観的な劣化度判定を行う。さらに、これらの点検情報を3Dモデル(BIM/CIM)で管理するシステムであり、桟橋の劣化状態を3Dモデル(BIM/CIM)により確認でき、点検結果などを一元管理することで、構造物の経年変化を把握することが可能である。					
活用状況写真							
				• 丽像解析 [よる3Dモデル化		当社実施範囲
	1	-Boatによる 点検を実施 <u>外</u>			フトによる劣化抽出	→ t	Dモデルで点検 報を管理 内業
点検機	é械	0					
当社の実施操縦者	<u>′</u>	0					
範囲(該当 受託業	務	0			0		0
○) 備考		点検機械、操縦者を含め当社にて点検業務を受託する。 2回目以降も同様の利用形態であり、点検機械のリース等は不可。					

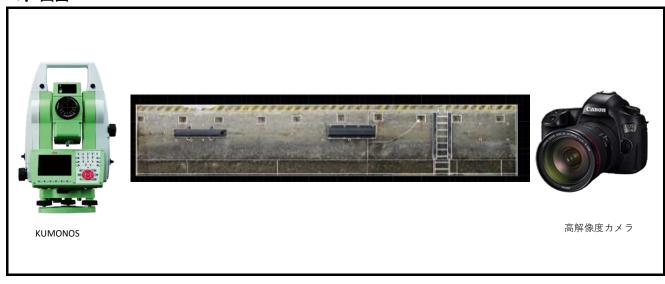

対象	施設等						
	対象施設	水域施設		外郭施設	係留	施設	その他
	対象施設				()	
	構造形式				枝	橋	
	点検部位・点検内容	桟橋下面の	劣化度判定				
概算費用		406万円/3,000㎡(諸経費込み) (内業:346万円、外業:60万円)				点検場所、対象面積等により増減 あり	
点検実績		6件 港湾6件(国1件、民間5件):近畿地方整備局、東北グレーンターミナル(株) 等					
現有	現有台数			基地住所	栃木県那須塩原市		
追加	機能等の開発予定	未定					
特許:特開2019-159379「三次元画像生成システム」 論文:水野剣一、System of Inspection and Diagnosis for Port Structures Using Uni Boat、PIANC YEARBOOK、p.3-20、2018 - De Paepe-Willems Award First place 水野剣ーほか、ラジコンボートを用いた桟橋下面部の点検・診断システム、土 文集B3(海洋開発)、Vol. 73No. 2、p.I_432-I_437、2017。 その他:第2回インフラメンテナンス大賞特別賞				First place			

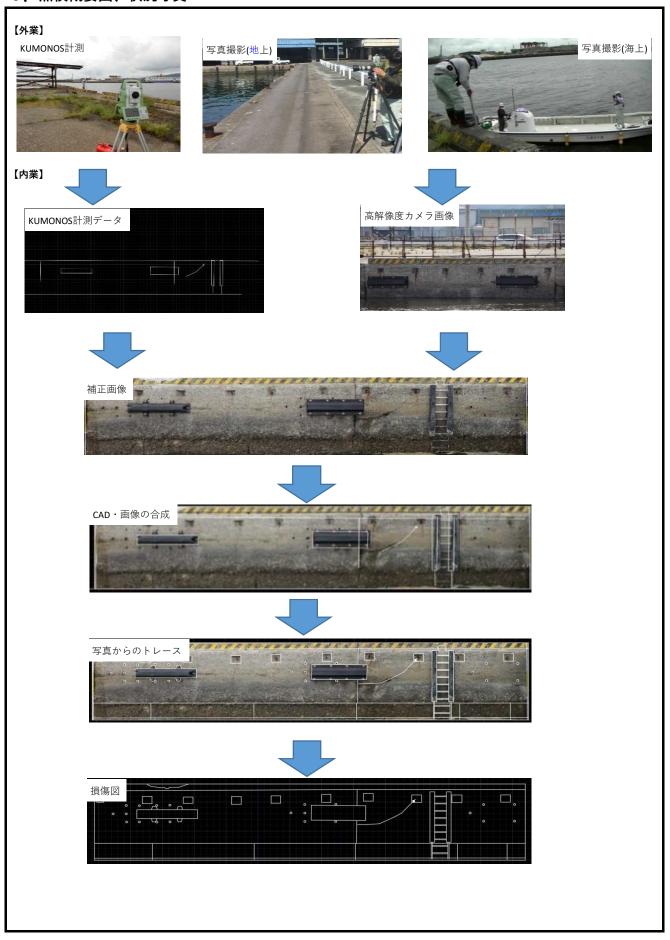
外形寸法・重量	2.2m×1.1m×0.65m (全長×全幅×全高)					
(独自で設定した項目)	重量:57.5kg					
最高速度	約4m/s					
項目	適用条件	補足事項				
現場条件						
周辺条件	桟橋側面から桟橋内部へ進入する際、幅1.5m ×高さ0.8m以上の離隔が必要	進入可能高さは、波高により若干の変動あり				
作業範囲	ボート操作及び画像通信可能距離:60~80m (桟橋下部)	見通しの良い海域では200m程度の範囲で操 船可能				
安全面への配慮	無線が途切れた場合、スラスタ停止機能有り	-				
現地への運搬方法	ユニック車で運搬、海上に投入する	-				
気象海象条件	雨天・降雨時は測定不可 波高1.0m以下	波高0.5m以上では調査効率低下				
(独自で設定した項目)	-	-				
作業・運用体制、留意事項						
作業体制 (必要人員・構成)	内業:1~2名 外業:4名(監督者1名、操船者1名、点検者1 名、ユニック車オペ1名)	-				
日当たり作業可能量 (準備等含む作業時間)	3,000㎡/日	人員目視と比較し、2.4倍の調査効率を実現				
夜間作業の可否	可能	LED照明を12灯完備				
利用形態	リースなし	_				
(リース等の入手性)	業務委託(操船・解析は当社が行う)					
関係機関への手続きの必要性	港湾管理者による水域占用許可が必要	-				
解析ソフトの有無と必要作業	自社開発ソフト有り	解析には3,000㎡あたり画像約5,000枚(約				
外注及び費用・期間等	解析期間は約1ケ月/3,000㎡	20GB相当)の使用を想定				
(独自で設定した項目)	-	-				
パソコン等動作環境		1				
o s	Windows7以降					
メモリ	16GB以上					
必要なソフトウェア	Microsoft Excel2013以降 AutoCad LT2016以降					

項目		性能	補足事項
運動	性能		
	構造物近傍での安定性	常に安定	ボート外周に緩衝材あり
	狭小進入可能性能	桟橋側面から桟橋内部へ進入する際、幅1.5m ×高さ0.8m以上が必要	進入可能高さは波高により若干の変動あり
	最大稼働範囲	200m程度(見通しの良い海域)	-
	連続稼働時間	約2時間	冬季は1.5時間程度
	自動制御の有無	なし	-
	(独自で設定した項目)	-	-
計測	性能		
	計測精度	0.5mm以上のひび割れ幅を抽出可能	-
	位置精度	数cm	-
	色識別性能	有り	-
	(独自で設定した項目)	撮影用:一眼レフカメラ	様々なスペックの撮影用カメラに載せ替え可
	カメラ仕様	操作用:小型防水カメラ	能
その	他		
	操作に必要な資格の有無	なし(当社で実施)	-

4. 図面

			作業効率	270% (当技術/従来	技術)	現地点検作業:人員目視(標準歩掛)と比較 当技術(標準値):3,000 ㎡/日 従来技術:1,100㎡/日(陸上目視調査)
特徴			経済性	180万円/3,	<u>000㎡</u>	算定条件:護岸の上部工側面を地上から計測できる場合
			(独自で設定した項目) 再現性	座標を用いた	変状の計測か	「可能であり、過去の点検結果との比較ができる。
連絡急	先等		クモノスコーポ 宮本 彬彦 Tel			ail:miyamoto@kankou.co.jp
技術系	四介URL(パン	ノフレット等)	https://www			
本技術は、遠方より対象物の形状・変状を計測できる「KUMONOS」 [※] と高解像度が (フルサイズセンサーのデジタル1眼レフカメラ)の撮影・補正を組み合わせることで 技術概要 来のカメラ点検より短時間で正確に現場における点検とデータ解析が可能な技術である ※トータルステーションにクラックスケールを内蔵し、対象物及び変状の形状・幅を遠方より正 測し、自動図化(CAD化)できるシステム。					フカメラ)の撮影・補正を組み合わせることで、従 における点検とデータ解析が可能な技術である。	
活用状況写真			高解像度力メラ撮影状況			
			KUMONO: 写真撮	1	・画像合成 ・損傷図の作 ・地上部での	当社実施範囲 ・維持管理計画 ・補修設計
活用:	活用フロー			外業		内業
		点検機械	0			
	坐昇の中佐!	操縦者	0			
	当社の実施 範囲(該当	受託業務	0			0
		備考	外業、内業ともに当社で実施する。 点検機械のリースは可能。(クモノス技術者検定の修了が必要)			


対象施設等								
	社免 体型	水域施設		外郭施設	係留	施設	その他	
	対象施設			0	(\supset	0	
	構造形式			重力式・矢板式・その他	重力式・矢	板式・桟橋	橋梁等	
	点検部位・点検内容	陸上部(エ	プロン等)	及び海上部(上部工側面)の変状			
概算	費用	約180万円/	180万円/3,000㎡(諸経費込み)			現地計測	現地計測から変状図作成まで	
点検実績		0件			-			
現有	台数	4台	台 基地住所 大阪府箕面市、福岡県福岡市 神奈川県川崎市		逼岡市、			
追加機能等の開発予定 Alを使用した損傷判定		た損傷判定						
特許	・NETIS、関連論文等	特許:第3996946号 論文:トータルステーションとデジタル画像を組み合わせたひび割れ計測手法の開発,土木 学会論文集F3(土木情報学), Vol.73, No.2, I_173-I_180, 2017. その他:点検支援技術性能カタログ(国土交通省道路局)						

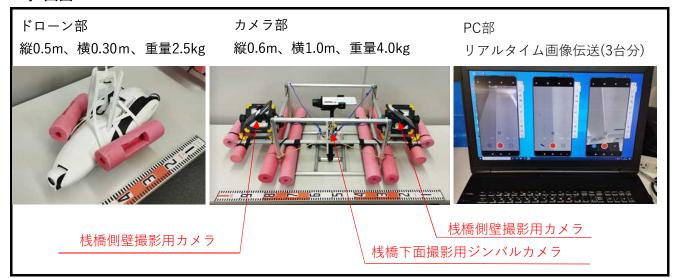

外形	対法・重量	KUMONOS:203×226×325 (mm) ※測量三脚を除く 高解像度カメラ:152×117×76 (mm) ※望遠レンズを除く				
	(独自で設定した項目) 使用機材	KUMONOS:2級Aトータルステーション「KUMONOS」 高解像度カメラ:CANON EOS 5DS(5040万画素)				
	項目	適用条件	補足事項			
現場	条件					
	周辺条件	固定された桟橋や地面等の地上にKUMONOS を設置する必要がある。	-			
	作業範囲	地上部および海上部	-			
	安全面への配慮	車両等の往来がある場合は作業エリアをカ ラーコーン等で明示する。	-			
	現地への運搬方法	乗用車で移動可能	-			
	気象海象条件	風速10m/秒以下	雨天の場合は画像撮影ができない。望遠レン ズを使用する場合は無風が望ましい			
	(独自で設定した項目) 計測範囲	KUMONOS:機器から120m以内 高感度カメラ:機器からの距離が水面と対象 物までの距離と同等程度(船舶等を用いて撮 影する場合)	高感度カメラにより海上の船舶にて撮影をする場合、調査船は5t未満の漁船等を使用			
作業	・運用体制、留意事項		l.			
	作業体制 (必要人員・構成)	外業:2~4名 内業:1名	調査船使用時は操船者が別途必要			
	日当たり作業可能量 (準備等含む作業時間)	3,000㎡/日(標準値)	人員目視と比較して約2.4倍の効率を実現			
	夜間作業の可否	可能	投光器等により照度の確保が必要			
	利用形態 (リース等の入手性)	リース可	リース時は別途技術指導が必要			
	関係機関への手続きの必要性	船舶にて調査する場合、海上保安部への作業 許可申請等の手続	-			
	解析ソフトの有無と必要作業 外注及び費用・期間等	計測データの図化、画像編集、図面編集で解 析ソフトを使用	撮影枚数、抽出損傷により費用が変動			
	(独自で設定した項目) 経年変化	経年計測を行うことができる。	現場内に固定点2点設置する必要あり			
パソ	′コン等動作環境					
	O S	Windows10				
	メモリ	16GB以上	16GB以上			
	必要なソフトウェア	CADビューワーソフト、PDFビューワーソフト				

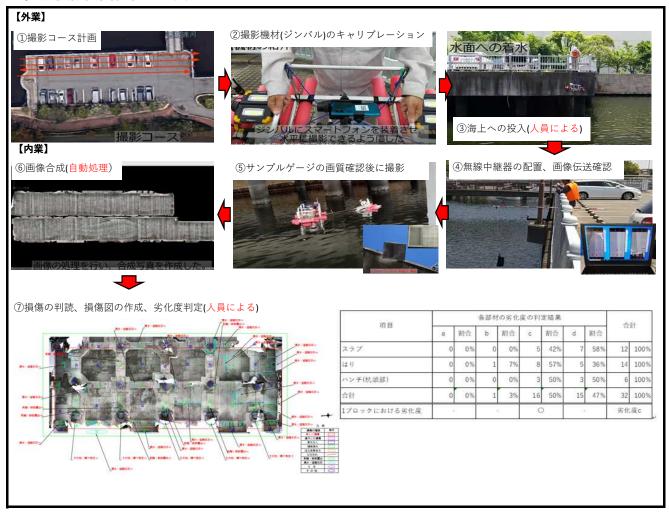
3. 計測性能

項目		性能	補足事項
計測	性能		
	計測精度	KUMONOS: 0.2mm以上のひび割れ幅が計測可能(離隔距離45m以内)	-
	位置精度	-	-
	色識別性能	有り	-
	(独自で設定した項目)	KUMONOS:離隔距離45m以内	ひび割れ幅0.2mmを計測する場合(ひび割
	ひび割れ計測可能距離	高感度カメラ:離隔距離120m以内	れ幅3mmであれば150mの計測実績あり)
その	他		
	操作に必要な資格の有無	クモノス技術者検定の修了	-

4. 図面

ジンバルカメラ搭載水上ドローンによる港湾構造物下面の点検


作業効率 240% 現地点検作業:人員目視(標準歩掛 (当技術/従来技術) 現地点検作業:人員目視(標準歩掛 当技術(標準値):3,000㎡/日 (
	(査)				
特徴経済性220万円/3,000㎡算定条件:作業員3名の出張費含まで び劣化度判定資料を想定。85万円/E 可能。					
(独自で設定した項目) 無線操作による水上ドローンを用いて、効率的に桟橋下面の写に、SfMソフトによる自動合成を行うことで、現地調査職員以 傷調査、劣化度判定が可能となる。					
品質 傷調査、劣化度判定が可能となる。 					
株式会社エイテック西日本支社 空間情報調査部 木村光晴連絡先等					
Tel: 06-4869-3365 E-mail: kimura-mt@kk-atec.jp					
技術紹介URL(パンフレット等) <u>https://www.kk-atec.jp/service/</u>					
技術である。ドローンには揺れを抑制するジンバルカメラを搭載し、波浪技術概要がら構造物の画像を効率的に撮影、取得できる。撮影後は市販の三次元S	桟橋下部等に点検調査員が立入らずに、効率的に調査することを目的としたドローン点検技術である。ドローンには揺れを抑制するジンバルカメラを搭載し、波浪の影響を低減しながら構造物の画像を効率的に撮影、取得できる。撮影後は市販の三次元SfMソフトを用いて、3D点群及びオルソ合成画像を生成し、ひび割れや剥落等の損傷箇所を判読し、客観的な損傷調査資料作成、劣化度判定を行うことができる。				
活用状況写真					
当社実施範囲	当社実施範囲				
水上ドローンによる点検の実施 ・合成画像の作成 ・維持管 ・適像判読による損傷状況調査 ・著化度判定 ・ 名人度判定 ・ 本格を設める。	•				
点検機械					
当社の実施	Δ				
型四(改当					
外業、内業ともに当社で実施する。備考 点検機械のリース等は不可。△: 当社への委託でも可能。					


対象	対象施設等						
	対象施設	水域施設		外郭施設	係留	施設	その他
	刘敦旭 故				(O	
	構造形式				桟	橋	
	点検部位・点検内容	桟橋下面の	劣化度判定				
概算	概算費用		約220万円/3,000㎡ (諸経費込み) (外業:60万円、内業:160万円) 点検場所、対象面積 減あり			対象面積等により増	
点検	実績	2件 港湾2件(民間2件):大阪ガス(株)姫路製造所、関西電力(株)姫路発電所			(株)姫路発電所		
現有	現有台数			基地住所	兵庫県尼崎	市	
追加機能等の開発予定		未定					
特許・NETIS、関連論文等 特になし							

外形寸法・重量	ドローン部:縦0.5m、横0.30m、重量2.5kg、	カメラ部:縦0.6m、横1.0m、重量4.0kg				
(独自で設定した項目) 画像伝送システム	スマホアプリにより、リアルタイム画像(カメラ3台分)をPC1台に伝送可能。伝送に際しては、WiFi無線中継器を1台配置する。					
項目	適用条件	補足事項				
現場条件						
周辺条件	桟橋下面進入に際し、桟橋下面の杭間は1.0m 以上、高さ空間は0.5m以上が必要	状況に応じて撮影機材のカスタマイズは可能なため、左条件の緩和も可能				
作業範囲	ドローン操作可能距離:300m程度(見通し良好の場合)、リアルタイムでの画像通信可能距離:60~80m	リアルタイムでの画像確認を行わない場合 は、現地ではドローンによる計測のみ行い、 画像合成処理後に施設の確認を行う。				
安全面への配慮	無線が途切れた場合用に必要に応じて安全 ロープを装着	緊急用にゴムボートを準備				
現地への運搬方法	普通作業車で運搬、簡易ロープで海上に投入	-				
気象海象条件	雨天以外、風速:平均5m/s以下、視程: 200m以上、波高:0.2m以内	-				
(独自で設定した項目)	-	-				
作業・運用体制、留意事項						
作業体制 (必要人員・構成)	外業:3名(監督者、操縦者、安全監視者) 内業:1名~2名	-				
日当たり作業可能量 (準備等含む作業時間)	3,000㎡/日(標準値)	作業箇所が分かれた場合は増減あり				
夜間作業の可否	不可	安全面での当社判断				
利用形態 (リース等の入手性)	リース不可 業務委託	-				
関係機関への手続きの必要性	海上保安部への作業許可申請等、港湾管理者 等への作業届等、周辺漁業組合への周知。	漁業組合に関しては、市場や漁港がある 場合に限る。				
解析ソフトの有無と必要作業 外注及び費用・期間等	解析ソフトなし、合成画像等を人員目視で損 傷を判読し、劣化度判断を行う。	-				
(独自で設定した項目)	-	-				
パソコン等動作環境	•					
0 S	Windows10					
メモリ	16GB以上					
必要なソフトウェア	SfMソフトPIX4D、AutoCAD、Adobe Acrobat Reader、DocuWorks Viewer					

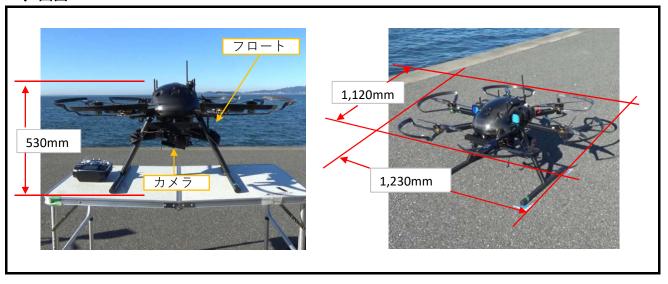
	項目	性能	補足事項
運動	性能		
	構造物近傍での安定性	基本ドローンの安定性に問題はない。桟橋上からの操縦は60m以内	構造物の込合い具合で安全ロープを装着、無 線の途切れに備える。
	狭小進入可能性能	幅1.0m、高さ0.5m以上で進入可能	状況に応じて撮影機材のカスタマイズは可能 なため、左条件の緩和も可能
	最大稼働範囲	見通し良好で200m程度	画像通信可能距離は80m
	連続稼働時間	約2時間	バッテリー交換で連続稼働可能
	自動制御の有無	なし	-
	(独自で設定した項目)	-	-
計測	性能		
	計測精度	撮影距離3.0mで0.5mm以上のひび割れ幅を抽 出可能	毎回、撮影時前後にサンプルゲージを撮影 し、品質を確認
	位置精度	数cm	-
	色識別性能	有り	-
	(独自で設定した項目) 画像揺れ抑制性能	ジンバル搭載により、波高0.2m以内の揺れ は、ほぼ水平画像として取得	-
その	他	_	
	操作に必要な資格の有無	なし(当社で実施)	-

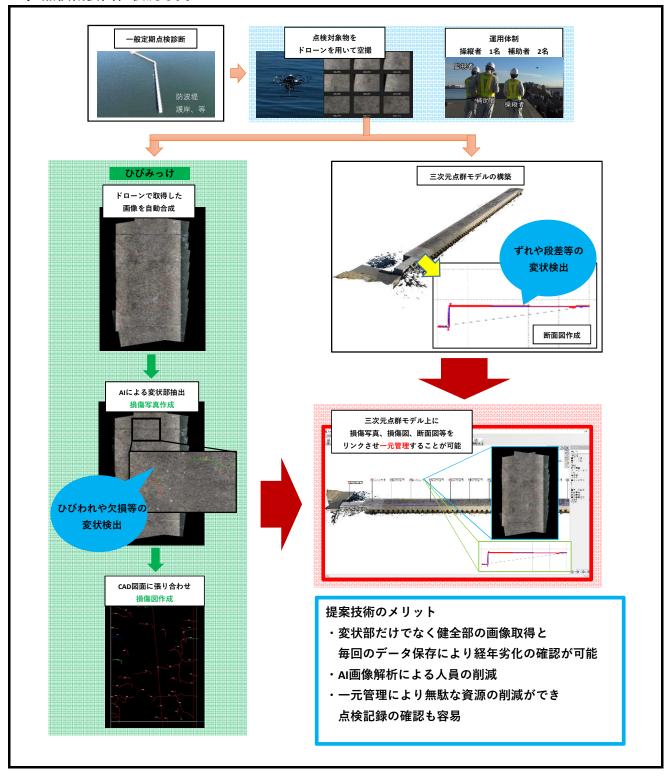
4. 図面

技術名

AIや三次元点群モデルを活用した、港湾施設の定期点検支援技術

	作業効率 364% (当技術/従来技術)		外業作業量: 当技術(標準値):4,000㎡/日 従来技術:1,100㎡/日 従来技術に比べ、内業の作業時間は増加する。 ※全長400mの防波堤を想定		
特徴	経済性	<u>260万円/4,000㎡</u>	成果物として、対象範囲全ての撮影画像(オルソモザイク画像可)、一元管理モデル(三次元点群モデル)が追加される。 ※従来点検と同様の成果物のみ作成することも可能。		
	(独自で設定した項目)	従来技術では損傷個所のみを撮影していたことに対し、当技術では点検対象範囲全てを記録できる。また、AIによる高精度画像解析や断面図の作成、解析結果を三次元点群モデル上で一元管理できることから、変状位置把握や経過観察が容易となり、維持管理業務の効率化に繋がる。			
連絡先等	[本件全般に関するお問合せ先]三信建材工業株式会社 開発室 室長 石田晃啓 Tel: 0532-34-6066 E-mail: info@sanshin-g.co.jp [ひびみっけに関するお問合せ先]富士フイルム株式会社 産業機材事業部 佐藤康平 Tel: 03-6447-5179 E-mail: infra_service@fujifilm.com				
技術紹介URL(パンフレット等)	三信建材工業株式会社 https://sanshin-g.co.jp/business/drone/bridge-inspection-support-technology 富士フイルム株式会社 https://www.fujifilm.com/jp/ja/business/inspection/infraservice/hibimikke				
技術概要	当技術は防波堤や護岸を対象に、国産ドローンで撮影した画像をクラウド上でAI解析することで、ひび割れ等の変状部を抽出し、損傷図を作成する。また、取得画像から復元した三次元点群モデルより断面図を生成し、ずれ、段差などの変状を検出する。 更に、三次元点群モデル上に損傷写真や損傷図をリンクさせ一元管理することにより、変状位置把握とその写真の確認及び今後の経過観察が容易となるため、維持管理業務の効率化が期待できる。一元化されたデータはビューアとして出力され、複数個所(現場と事務所等)にて同時閲覧が可能。				
活用状況写真	変状抽出				

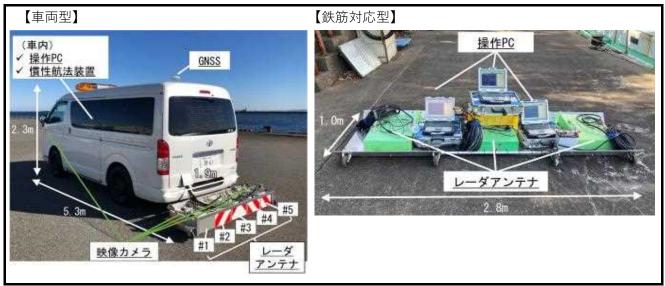

			当社実施範囲						
活用フロー		ř.	ローン撮影外業		①撮影画像の解析 ②三次元点群モデ ③断面図等の作成 ④損傷図の作成 ⑤①~④を三次元 上に一元管理	いの構築		度判定 内業	
		点検機械		0					
	当社の実施	操縦者		0					
	範囲(該当	受託業務		0		0			
	(O)	備考				ごするが、要望に応 る作業は実施可能。	こじて発注者	ーニー 当により劣化	度判定した結果を別
対象	施設等								
	対象施設		水域施設			外郭施設	係留施設		その他
	I++>4- #/					0			
	構造形式	5. 经内容	海上厂理	重力式 海上に現れているコンクリート面の外観目視					
点検部位・点検内容概算費用			約260万円/4,000㎡ (諸経費込み) ※防波堤(全長400m)の上部工上面及び側面を対象とした 場合。 対象構造物、現場環境、納品 する成果物により変動する。 詳細については別途、個別見積 にて対応。					により変動する。	
点検	実績		20件 その他土木構造物点検(国16件、地方公共団体等2件、民間2件) :四国地方整備局、四国技術事務所 等				12件)		
現有台数		2台			基地住所	愛知県豊橋	沛		
追加機能等の開発予定			・準天頂衛星システムへの対応。(飛行安定性の向上) ・ポリラインやポリゴンを用いて、三次元モデル上に損傷を直接記録。 ・当技術の向上と普及を目的とした技術講習・技能認定機関を設置。 (技術講習・技能認定機関:(一社)社会インフラメンテナンス推進協議会)						
特許・NETIS、関連論文等			社会インフラ画像診断サービス「ひびみっけ」(富士フイルム): NETIS(KT-190025-VR)、点検支援技術性能カタログ(案) 非GPS環境対応型ドローンを用いた近接目視点検支援技術(三信建材工業): 点検支援技術性能カタログ(案)						

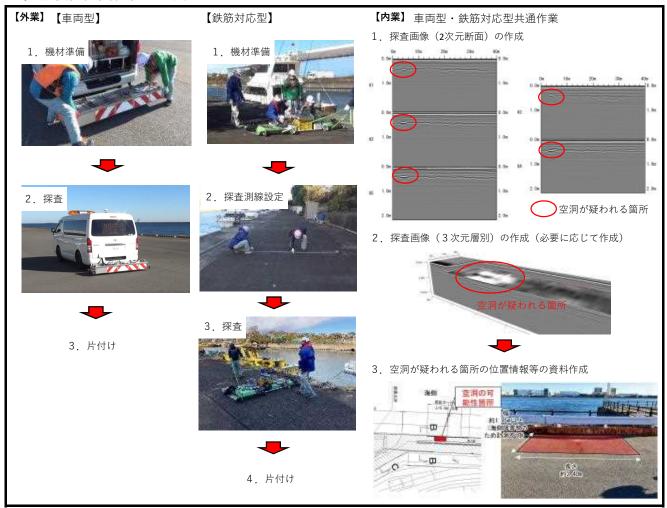

外形寸法・重量	1.12m×1.23m×0.53m (全長×全幅×全高) 重量:約9kg					
(応募者独自で設定した項目)	ドローン:ACSL-PF2(㈱自律制御システム研究所(国内メーカー)					
機種名	搭載カメラ:約4,200万画素(単焦点)、約2,	400万画素(16mm~210mm)				
項目	適用条件	補足事項				
現場条件	•					
周辺条件	・飛行経路付近に民家等の建物や電線がある場合は不可。 ・電波塔などがある場合は不可。	(電波塔の例) 放送局、携帯電話電波発信基地、変電所等				
作業範囲	・目視内飛行の範囲。(約200m) ・離着陸に3m四方程度のスペースが必要。	離着陸スペースは平坦な地面が望ましい。				
安全面への配慮	<運用面> ・作業中は作業区域と注意喚起看板の設置。 ・飛行経路内には関係者であっても極力立ち 入らない。 <機体面> ・機体にはプロベラガードを搭載。 ・通信異常、バッテリー低下等の非常時に離 陸地点へ自動帰還。 ・前方距離の把握が可能。	・必要に応じて作業区域内への第三者進入 を防ぐため、監視者を設置する。				
現地への運搬方法	現場へは一般的な業務用車両で運搬可能。	-				
気象海象条件	・気温0°C~40°C ・雨天、降雪時は不可。 ・地上平均風速5m/s以下	・コンクリート表面が濡れている場合、画 像解析精度が低下。				
(独自で設定した項目) その他	・機体のバッテリーや基地局PCの充電が必要となる場合、電源が必要(100V)。 ※電源がない場合は、発電機を設置する。 ・自動膨張のフロート搭載。	-				

作業・運用体制、留意事項					
作業体制 (必要人員・構成)	操縦者1名、補助者2名合計3名	補助者の役割 ・基地局監視(機体のステータス確認) ・映像モニタリング			
日当たり作業可能量 (準備等含む作業時間)	4,000㎡/日:外業(標準値)	現場環境、現場箇所により異なる。			
夜間作業の可否	不可	-			
利用形態 (リース等の入手性)	現場作業から解析作業までの業務委託。	・所定の撮影条件を満たした場合、解析作 業のみ受託可能。			
関係機関への手続きの必要性	・ドローンの飛行許可申請。 ・港湾管理者等への作業届。 ・周辺漁業組合への周知。	・漁業組合に関しては、市場や漁港がある場合に限る。 ・施設周辺海上で船舶の往来がある場合は、関係各所へ要確認。			
解析ソフトの有無と必要作業外注及び費用・期間等	< 画像解析 > ・社会インフラ画像診断サービス 「ひびみっけ」(富士フイルム㈱) 画像自動合成、AIによる変状自動検出。 < SfM > ・Metashape (Agisoft) 三次元点群モデルの構築。 < 一元管理 > ・ScanSurveyZ(㈱ビィーシステム) 三次元点群モデルへ各種データの紐づけ、ビューア出力。	・4000㎡当たりのデータ容量 成果物:8GB程度 撮影画像:12GB程度 ・4000㎡当たりの作業日数:15日程度 ※1人での作業を想定(複数人作業可) ※変状の程度や構造物の形状等により 異なる ・AIの結果を作業員が確認し、必要に応じて 修正を行う。			
(独自で設定した項目)	-	-			
パソコン等動作環境	•	•			
0 S	<画像解析>Windows 64bit <sfm>Windows7 SP以降/64bit <一元管理>Windows7/8/10 64bit</sfm>				
メモリ	<画像解析>4GB以上(推奨8GB以上) <sfm>4GB以上のRAM(推奨32GB以上) <一元管理>8GB以上(推奨16GB以上)</sfm>				
必要なソフトウェア	<画像解析>当該ソフト、JPG,PNGデータ間 <sfm>当該ソフト、.txt,.csvデータ閲覧ソ <一元管理>当該ソフト、JPG,PNG,txt,.csv</sfm>	フト			

項目		性能	補足事項
運動	性能		
	構造物近傍での安定性	・水平方向:±0.7m程度 ・垂直方向:±0.9m程度	検証時 最大瞬間風速 5m/s
	狭小進入可能性能	5,000mm×5,000mm×4,550mm (縦×横×高さ)	-
	最大稼働範囲	GNSSによる自律制御時 200m程度	見通しの良い海域。
	連続稼働時間	約10~15分程度(気温0~40°C)	-
	自動制御の有無	GNSSによる自律飛行機能あり。	-
	(独自で設定した項目) 撮影飛行速度	0.5m/s~1.0m/s	-
計測			
	計測精度	・ひび割れ幅:0.2mmから検出可能。 ・段差、ずれ等の最小計測値:5cm程度から 計測可能。 ※撮影離隔距離による。	・ひび割れ解析はAI画像解析(ひびみっけ)、段差・ずれ等の最小計測値は三次元点群モデルの断面図出力をし、実測値と解析結果を比較。
	位置精度	0.1m以内	・3点に設置したマーカー位置を実測値と三次元点群モデル上で計測した数値を比較。
	色識別性能	あり	-
	(独自で設定した項目) 必要照度	300 k 以上 ※ひび割れ幅0.2mmの検出。	搭載カメラの換装も可能。 ・最大外形寸法:L200mm×W200mm×H100mm ・最大重量:約1kg
その	他		
	操作に必要な資格の有無	なし(当社で実施)	・国土交通省航空局の飛行許可・承認 取得(当社で手続を実施) ・第三級陸上特殊無線技士(当社の担当者 が取得済)

4. 図面


		作	業効率	車両型:60 鉄筋対応型 (当技術/従	:300% _{生技術})	鉄筋対応型 ※対象構造	00㎡/日(標準値) : 3,000㎡/日(標準値 物の規模により、効 ,000㎡/日(カート型	· 枢性が				
特徴			紹	車両型:600円/㎡ 算定条件:調査面積6,000㎡(岸壁総延長1,00 鉄筋対応型:1,100円/㎡ 6m) で障害物等がないものとして算出。								
				(独自で設定した項目) 時期を変えて同一測線を探査することにより、経時変化を確実かつ効率的に把握可再現性 能。								
連絡	 先等				事業企画							
			山田茂	治 Tel:C	3-5445-208	30 E-mail	: yamadas@	@kge.co.jp				
技術網	紹介URL(パ)	ンフレット等)	https:	//www.kge	.co.jp/tech	nology.html						
技術概要			ダ探査 り探査 リート	従来のエプロン下の空洞探査は、シングルチャンネルかつ手押しによるカート型地中レーダ探査システムで行っている。本技術は、①従来の探査可能深度を維持しながら、車両により探査速度を向上させたマルチチャンネル地中レーダ探査装置(車両型)、②鉄筋コンクリートエプロンでの空洞探査精度を高めたマルチチャンネル地中レーダ探査装置(鉄筋対応型)を用いて、岸壁エプロン下の空洞を探査するシステムである。								
活用状況写真			車両型		43	3.2.4.1	鉄筋	対応型	La Carte de la Car			
活用フロー				地中レーダに 空洞探査	外業	当社実 ・地中レータ 画像の作成 ・異常信号抽	iii	・空洞確認調査 ・空洞調査報告書 作成 外業 内業	 	空洞補修外業		
		点検機械		0		0		\triangle				
	V/41 ~ - 14	操縦者		0		0		Δ				
	当社の実施 範囲(該当	受託業務		0		0		Δ				
	● (談当	備考	点検機		当社で実施 等は不可で でも可能			1				

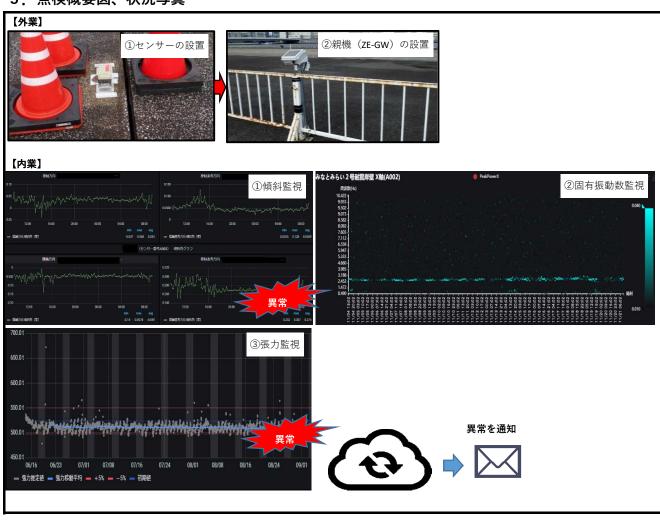

対象施設等							
	対象施設	水域施設		外郭施設	係留	施設	その他
	X				(\supset	0
	構造形式			重力式・矢板式	重力式	・矢板式	臨港道路等
	点検部位・点検内容	アスファル	ト・コンク	リート(有筋・無筋)の	エプロン等	舗装下の空淵	司
概算費用					探査対象の対域があり	規模に応じて費用の	
点検実績		1件 港湾1件(地方公共団体等):青森県					
現有台数		車両型、鉄筋対応型ともに1台基地		基地住所	東京都港区		
追加機能等の開発予定		なし					
NETIS: KT-170075-A 特許・NETIS、関連論文等 資料: SIP インフラ維持管理・更新・マネジメント技術プロジェクト紹介-開発技・ -,研究番号13, p.36-37, 2017.				召介 – 開発技術の概要			

外形	対法・重量	車両型:長さ5.5m、幅1.9m、高さ2.3m、重量3,300kg(車両重量含む) 鉄筋対応型:全長2.8m、重量50kg					
	(独自で設定した項目) マルチアンテナ	複数のアンテナ(マルチアンテナ)を搭載することにより、面的探査が可能となり作業効率 が向上。					
	項目	適用条件	補足事項				
現場	条件						
	周辺条件	・鉄板敷設・水溜まり箇所は調査不可 ・著しい不陸がないこと ・地下水以深の探査不可	障害物付近は小回りが利く従来のレーダ装置 での探査が必要				
	作業範囲	車両型:車両が進入可能な場所 鉄筋対応型:特に制限なし	ただし、鉄筋対応型は2.8m以上の幅が確保 できること				
	安全面への配慮	荷役等の作業がないこと	作業員等との接触回避のため				
	現地への運搬方法	商用車等の車両による運搬が可能	-				
	気象海象条件	雨天時は調査不可	雨天後の水溜まり箇所も調査不可				
	(独自で設定した項目) 舗装条件	車両型は無筋舗装、鉄筋対応型は有筋舗装も 可能。路盤等に鉱さいが含まれないこと。	鉄筋対応型は舗装厚0.4m程度以下、鉄筋間 隔は0.15m程度以上				
作業	・運用体制、留意事項						
	作業体制 (必要人員・構成)	外業:2~3名 内業:3名	外業は車両型2~3名、鉄筋対応型3名				
	日当たり作業可能量 (準備等含む作業時間)	車両型:6,000㎡/日(標準値) 鉄筋対応型:3,000㎡/日(標準値)	従来技術(1,000㎡/日)と比較して3~6倍 程度の効率化を実現				
	夜間作業の可否	可能	照明設備が必要				
	利用形態 (リース等の入手性)	リース不可 調査・解析は当社で実施	-				
	関係機関への手続きの必要性	港湾管理者による立入手続き	岸壁利用者への事前周知				
	解析ソフトの有無と必要作業 外注及び費用・期間等	各装置専用の解析ソフト有。データ画像化お よび異常信号抽出作業が必要(自社実施)。	車両型:350円/m²、解析3.5日/1,000m² 鉄筋対応型:500円/m²、解析5日/1,000m²				
	(独自で設定した項目) -	-	-				
パソ	コン等動作環境	•					
	O S	Windows10以降					
	メモリ	4GB以上					
	必要なソフトウェア	PDF閲覧ソフト					

	項目	性能	補足事項
運動性	能		
棒	觜造物近傍での安定性	· ·	- .
梦	夹小進入可能性能	幅5m以上の探査箇所であれば、進入可能	探査始終点での転回場所が必要
	曼大稼働範囲	-	-
連	直続稼働時間	-	車両型:車内電源のため、半永久稼働 鉄筋対応型:持参バッテリー数による
É	自動制御の有無	なし	-
	(独自で設定した項目) 探査速度	車両型:時速55km以下 鉄筋対応型:時速4km以下	探査速度以下であれば、探査精度に影響なし
計測性	能		
=	十測精度	最小検出空洞規模:長さ0.5m、幅0.5m、厚さ 0.1m	舗装や地盤の条件によって、より小規模な空 洞を発見できる場合あり
位	位置精度	車両型:0.5m以内 鉄筋対応型:0.2m程度以内	-
色	色識別性能	無し	-
	(独自で設定した項目) 最大探査深度	車両型:地表面から2m程度 鉄筋対応型:地表面から1.5m程度	地盤・地下水条件により多少の変動あり
その他	1		
持	操作に必要な資格の有無	なし(当社で実施)	-

4. 図面

1. 汉州州安					
	作業効率	199% (当技術/従来技術)	現地点検作業:従来技術と比較 当技術(標準値):3,000㎡/日(遠隔モニタリング) ※加速度センサーの設置個数により計測範囲は増減 従来技術:1,510㎡/日(陸上目視調査)		
特徴	経済性	<u>185万円/3000㎡</u>	ZE-GW (ゼロエナジーゲートウェイ) +加速度センサー台+モニタリングシステム構築費用 (185万円/3,000㎡+モニタリング費用 (常時モニタリングのため、点検10での費用は発生しない) ※3,000㎡の岸壁に5台の加速度センサー設置を想定。※常時モニタリング用のシステム運営費 (7.6万円/月)が別途必要。		
	(独自で設定した項目) 精度	(独自で設定した項目) 傾斜量であれば、0.1度から通常の目視点検で確認困難な精度で傾斜検出 堀の影響等も固有振動数の低下により劣化状況を数値化でき、判断する際数値により判定可能。斜張橋の斜材ケーブルの張力推定精度も0.01(t)の数 劣化算出が可能。			
連絡先等	沖電気工業株式会	会社 DX事業推進·	センター		
た何ルサ	山道 昇 Tel:	080-2055-1960 Emai	il: yamamichi015@oki.com		
技術紹介URL(パンフレット等)	https://www.oki	.com/jp/920M/zeroen	ergy gw/		
技術概要	港湾施設(構造物やパイプライン等)に関する揺れ、傾き、振動等による劣化兆候を配線 や給電が不要な機器を利用し、映像と共に、監視制御端末から監視が可能な技術。				
活用状況写真					
活用フロー	・機器の設置	置 の保存	当社実施節用 ・システムの点検/ ・異常検出時や計測データの提供、および報告目的に応じたデータ作成・報告書作成 ・ 報告書作成		
点検機械 当社の実施 範囲(該当 受託業務	Δ		0 0		
(該当 (内業は当社で実施機械のリースは同 △:当社への委託	可能。			

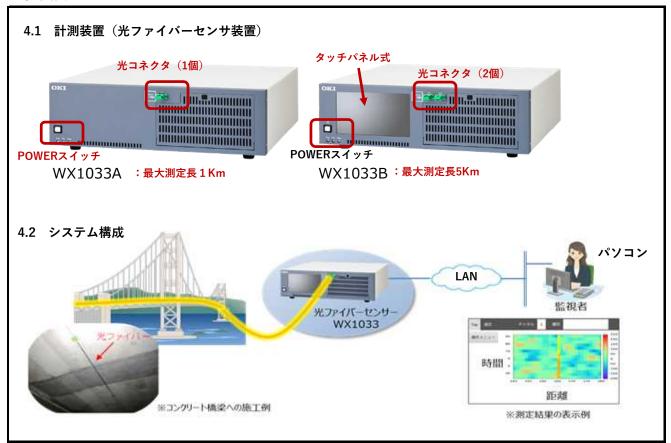

対象施設等							
	対象施設	水域施設		外郭施設	係留施設		その他
	刘敦旭 政			0	(O	0
	構造形式			重力式・矢板式・その他	重力式・矢	板式・桟橋	臨港交通施設等
	点検部位・点検内容	構造物の傾然	斜・固有振動	動数	I.		
概算費用		(外業:1307	約185万円/3,000㎡(諸経費込み) (外業:130万円、内業:55万円) ※常時モニタリング用のシステム運営費(7.6万円/月)が 別途必要。				
点検実績		5件 その他土木構造物5件: (民間5件),内2件は中日本ハイウェイ・エンジニアリング名古屋(株)					
現有	· ·台数	20台		基地住所	埼玉県蕨市		
・22年度に振動数の分析機能搭載により自動で固有振動数を抽出する機能を搭載予算 ・センサーに地震検知後に加速度情報を収集する機能を搭載予定。 ・各種センサー(浸水センサー、腐食センサー、歪み計等)を接続可能なアナログII GWを開発中。							
特許	・NETIS、関連論文等	・特許第5387239号、特許第5533964号、特許第5741651号、特許第6786999号 ・国土交通省性能カタログ:BR030036(無線加速度センサーによる橋脚の傾斜角モニタリング)、BR030033(無線加速度センサーによる斜張橋の斜材張力モニタリング)、BR030027(無線伝送装置を用いた変位計による支承移動量の測定)					

	空 中阳儿						
		単体型ZE-GW:外形寸法: L230×W284×H378mm, 重量: 4 Kg 超音波水位計付ZE-GW:外形寸法: L230×W210×H165mm, 重量: 4 Kg センサー部: Φ234×H281mm, 重量: 2Kg					
外形	/寸法・重量	高感度カメラ付ZE-GW:外形寸法:L230×W					
		カメラ部:L146×W1					
		加速度センサーユニット:外形寸法:L140×V					
		加速反 C フ グ ユー / T ・/ P/D i / A・E I FO ハ V	V70×1100111111,主主・3305				
	(独自で設定した項目)	最大5年間の計測が可能					
	電池寿命	3,00					
	項目	適用条件	補足事項				
現場	景条件						
	田 四 友 / 丛						
	周辺条件	-	-				
			ZE -GW とセンサーの通信可能距離:約50m				
	作業範囲	-	~1km(ZE- GW1機あたりセンサー20個接				
			続可能)				
	安全面への配慮						
	女王山、砂龍思	-	-				
	現地への運搬方法	現場へは一般的な業務用車両で運搬可能。	-				
	気象海象条件	・気温0°C~40°C ・降雪時は不可。	-				
	(独自で設定した項目)	-	-				
作業	・運用体制、留意事項	1					
	作業体制	外業:一					
	(必要人員・構成)	内業:1名(必要時)	-				
	日当たり作業可能量						
	(準備等含む作業時間)	3,000㎡/日:設置作業(標準値)	現場環境、現場箇所により異なる。				
	(华朋守百份17条时间)	·····································					
	夜間作業の可否	設置は不可。 点検はリモートから実施可能。	-				
	11 II II IV. 46	点 (快は グモート が 6 美地 引 能。					
	利用形態	リース可能	-				
	(リース等の入手性)						
	関係機関への手続きの必要性	-	-				
	解析ソフトの有無と必要作業	センサー1個当たりの常時モニタリング用シス テム運営費: 15,000円/月(※)、通信費	※計測項目により金額の増減あり。 ※契約数、契約年数により、10,000円、				
	外注及び費用・期間等	1,000円/月	5,000円、3,000円に段階的に割引。				
	(独自で設定した項目)	-	-				
パン		•					
	0 S	GoogleCrome搭載可能なハードウェア					
	メモリ	ブラウザが表示可能な必用メモリ					
	必要なソフトウェア	GoogleCrome					
	·						

	項目	性能	補足事項
運動	性能		
	構造物近傍での安定性	-	-
	狭小進入可能性能	-	-
	最大稼働範囲	-	-
	連続稼働時間	-	-
	自動制御の有無	-	-
	(独自で設定した項目)	ZE-GW:5 年	・環境条件は-20~60°Cを想定
	耐用年数	加速度センサーの耐用年数:10 年	・耐用年数は二次電池の寿命に依存
計測	性能		
	計測精度	傾斜精度: ±0.1度 張力推定性能: 0.01(t) 変位計測: ±0.1mm	傾斜、固有振動数計測時の計測レンジ:加速 度:±2G、 周波数:0~62.5Hz
	位置精度	-	-
	色識別性能	-	-
	(独自で設定した項目)	傾斜10分間隔で5年間計測可能	
	消費電力	固有振動数4回/日の計測で5年間計測可能	-
その	他		
	操作に必要な資格の有無	-	-

4. 図面

機種名	ゼロエナジーゲートウェイ ゼロエナジーゲートウェイ 単体型 超音波水位計付		ゼロエナジーゲートウェイ 水圧式水位計付	ゼロエナジーゲートウェイ 高感度カメラ付	無線加速度 センサーユニット
外観		OKI			
外形寸法(mm)	230×284×378	本体:230×210×165 センサー部:Φ234×H281	本体:230×210×165 センサー部:Φ29.5×H190 (ケーブル除く)	本体:230×210×165 カメラ部:146×180×229	140×76×60
重量	約4kg	本体:約4kg センサー部:約2kg	本体:約4Kg センサー部:約0.3kg ケーブル:約2Kg(30m時)	約5kg	約530g


			作業効率	530% (当技	<u>,</u> <u>a</u> 術/従来技術)	当技術	検作業:人員目視((標準値):1,000 n 術:1,510㎡/日:18	i/時間		
特徴		経済性	28万	円/1,000m		件:全長1,000m程度 1m幅×1,000mの領		:(桟橋、エプロン等) が可能)	を	
		(独自で設定した項目) 計測用ファイバーは一度、敷設工事を実施し保持すれば、同一の計測カ所の約 再現性 年変化を確実かつ効率的に診断可能。						一の計測カ所の経時・	・経	
			沖コンサルティングソリューションズ							
連絡	先等		新事業コンサルティンググループ							
			須藤 正之 Tel:080-1149-1314 E-mail:sutou627@oki.com							
技術網	紹介URL(パ)	ノフレット等)	https://www.	.oki.c	om/jp/sensing	g/opti	cal fiber/			
技術概要		本技術は光ファイバーケーブル上のブルリアン散乱光の解析によるモニタリング技術である。 本技術の活用により、光ファイバーの伸縮量の変化から、点検対象部位の伸縮歪み量をリアルタイムかつ広範囲(最大5km)に一括計測可能にすることができ、沈下/ひび割れ/破断/その他の変形等の損傷を捉えることが可能である。 従って、設計値を超える異常な伸縮歪みの発生を伴う変状に対するモニタリング性能が向上し、点検効率化が期待できる。 「係船岸上部工の劣化・防波堤の劣化検出例								
活用状況写真		たわみ検知								
			当社実施範囲							
		計測用光ファーバーの敷設工事	 	光ファイバーセン サによる点検支援 (計測業務) 実施	>	点検対象変状確認 ・変状量、変状位 置 ・時系列変化状況	>	・維持管理計画 ・補修設計		
活用	フロー		外業		外業		内業		内業	
		点検機械			0					
	当社の実施	操縦者			0					
	範囲(該当	受託業務	Δ		0		0			
		備考		の実施	 または当社の指定)	

対象施設等							
	<u>++</u>	水域施設		外郭施設	係留施設	その他	
	対象施設			0	0	0	
	構造形式			重力式・矢板式・その他	重力式・矢板式・桟橋	橋梁等	
	点検部位・点検内容	防波堤上部	工(沈下、	ひび割れ)の変状、護岸	、岸壁エプロン等(沈	下、ひび割れ)の変状	
概算費用		約28万円/1,000m(諸経費込み) (外業:3万円、内業:25万円)				、一敷設工事費、維持管 前修設計費用は含まず	
点検実績		4件 その他土木構造物4件(公共団体関連3件、民間1件):愛知県道路公社 等					
現有台数		6台	台 基地住所 埼玉県蕨市		埼玉県蕨市中央	市中央	
追加機能等の開発予定		空間分解能(現装置は1m)の向上					
特許:特許6308160、特許06376261、特許06489164、特許06705353 特許・NETIS、関連論文等 特許06308184 NETIS: KT-210029-A(登録日:2021年7月1日)				3、特許06358277、			

外形寸法・重量		・外形寸法:幅430mmX奥行き420mmX高さ132mm(突起物を除く)						
		- 重量:約14kg						
	(独自で設定した項目)		-					
	項目	適用条件	補足事項					
現場	条件							
	周辺条件	光ファイバー: -20°C~80°C 光ファイバーセンサ装置: ・温度:0°C~40°C ・結露無きこと、雨に濡れないこと						
	作業範囲	光ファイバー敷設工事 ・光ファイバーに沿った1m以上の連続計測ができる凹凸のない現場調査(計測) ・装置設置場所:近隣の港湾建屋内または業務用事務室(貸プレハブ等) ・操作場所:計測機器付近	調査(計測)時、装置は安定して操作できる設置台上に設置が望ましい					
	安全面への配慮	光ファイバー敷設工事:波浪、強風等の影響 で、転落等の危険がないこと						
	現地への運搬方法	陸上輸送(防水梱包貨物)	業務用自動車(レンタカー)にて現地搬入 5人乗りライトバン(1.5L)相当					
	気象海象条件	光ファイバー敷設工事:波浪、強風等、工事 への影響(作業品質、危険)がないこと						
	(独自で設定した項目)	-	-					
作業	<u> </u> ・運用体制、留意事項							
	作業体制 (必要人員・構成)	外業:3名 内業:2名	計測規模により異なる。左記は最小人員'-					
	日当たり作業可能量 (準備等含む作業時間)		目視調査と比較して約5倍の効率を実現					
	夜間作業の可否	光ファイバー敷設工事: 不可 調査(計測)/解析作業: 可能						
	利用形態 (リース等の入手性)	リース不可 調査・解析は当社または当社指定の計測業者 で実施	※当社指定の計測業者:光ファイバーセンサ 装置の操作、データ解析等の実績あり					
	関係機関への手続きの必要性	設置時:海上保安部への作業許可申請等、港 湾管理者への作業届等 点検時:港湾管理者への作業届等	点検時は現地立ち入りに必要な手続きのみ必 要。					
	解析ソフトの有無と必要作業 外注及び費用・期間等 (独自で設定した項目)	無し -	-					
パソ	コン等動作環境		1					
	0 S	Windows10						
	メモリ	8GB以上						
		Webブラウザ (Fdge. chrome)	Webブラウザ(Edge、chrome)					

項目	性能	補足事項		
運動性能				
構造物近傍での安定性	-	-		
狭小進入可能性能	-	-		
最大稼働範囲	-	-		
連続稼働時間	-	-		
自動制御の有無	-	-		
計測性能				
計測精度	歪み(伸縮) ・測定性能:±20με	$1\mu~\varepsilon$ = 単位長さの 10^{-6} 歪み(伸縮) 例: 1 mが 0.06 mm伸縮した場合 = $60~\mu~\varepsilon$		
位置精度	無し	装置の位置精度は不要		
色識別性能	無し	-		
(独自で設定した項目) 検出感度	$\pm 20\mu~\varepsilon$ (再現性: σ) $\pm 60\mu~\varepsilon$ (再現性: 3σ)	再現性 = 複数回計測したときの計測値の 「ばらつき」を表す。 $\pm 20\mu$ ϵ の感度では誤検出率は約 15% $\pm 60\mu$ ϵ の感度では誤検出率は約 0.03%		
(独自で設定した項目) 検出範囲	0 ~7,500 μ ε			
(独自で設定した項目) 空間分解能	1 m	光ファイバーを敷設した計測対象領域内で 1m毎に歪み値を計測し、出力します。		
その他				
操作に必要な資格の有無	無し	-		
(独自で設定した項目) アウトプット	c s v ファイル	計測された歪み値データは c s v ファイル形 式でアウトプットされる		
(独自で設定した項目) 動力	・動力源:電気式(AC100V) ・定格容量:450W	-		

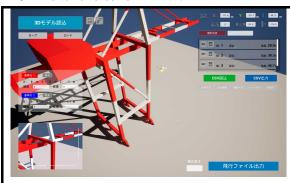
4. 図面

5. 点検概要図、状況写真

		作業効率	400% (当技術/従来手法	±) 当	記地での点検作業: 4技術:0.5日/1基 生来技術:2.0日/1基		る目視と比較	
特徴	特徴		250万円/基		『定条件:天候や周 なび点検結果取りま		による影響がない、 時間を含む。	事前作業
		(独自で設定した項目) 再現性	点検箇所の画像は に依存しない画像:				影できるため、操縦 向を確認できる。	業者の技量
連絡先等		株式会社三井E&	S物流システム事	業部テク	ノサービスセン:	ター		
		吉田 健治 Tel:	0863-23-2440	E-mail:	kenji-yoshida@	mes.co	o.jp	
技術紹介URL(パ	ンフレット等)			_		_		
技術概要		は、自動で飛行が 港湾クレーンの目 の安全性向上が其	から点検箇所の画 目視点検を実施す	像撮影ま るもので で撮影し	でを行うドロー ある。この技術	ンを使 により	実施されてきた。 用して、作業員の 、点検コスト改善 のように同画角で	代わりに や作業員
活用状況写真								
活用フロー		自動飛行ドによる点検	の宝施・施	検箇所の配設(外観)の 設(外観)の 設(外観)の		#	·維持管理計画 ·補修方法検討	内業
	点検機械	0						
 当社の実施		0						
範囲(該当	受託業務	0			0			
O)	備考	外業、内業ともに当社で実施する。 2回目以降も同様の実施体制であり、点検機械のリース等不可である。						

対象	対象施設等						
	++ 4n + /- =n		施設	外郭施設 係留		/施設	その他
	対象施設						0
	構造形式						荷役機械 (ガントリークレーン)
	点検部位・点検内容	ガントリークレーン等の変状(亀裂、塗装割れ、発錆などの有無)					
概算費用						目以降は、事前準備部 用を1/2に削減可能	
点検	実績	1件 港湾1件(地方公共団体等1件):鹿児島県大隅地域振興局					
現有台数		2台		基地住所	岡山県玉野	市	
追加機能等の開発予定		自動飛行ファイル生成アプリケーションの外販 撮影画像の自動発錆検知、自動定量評価技術の構築					
特許	・NETIS、関連論文等	_					

外形寸法・重量	810 × 670 × 430 mm(長さ×幅×高さ)、1	重量6.3kg				
(独自で設定した項目) 位置計測装置	独自アプリケーションで生成された、自動飛行ファイルをドローン読み込むことで、3Dモ デル上で設定した通りに自動撮影できる。					
項目	適用条件	補足事項				
現場条件	1					
周辺条件	・点検対象物周辺にドローン飛行の妨げになるものがないこと ・航空法でドローンの飛行が認められていない箇所でないこと	・空港周辺は高度制限が設けられており、対 象物の一部を撮影できない場合あり				
作業範囲	・点検対象物から20m程度離れた範囲内	-				
安全面への配慮	・点検作業時に関係以外の立ち入り禁止措置	-				
現地への運搬方法	・車両による運搬	-				
気象海象条件	・雨天、降雪時は不可 ・風速が常時10m/s以上は不可	-				
(独自で設定した項目) その他	・RTKを用いた位置情報をドローンが取得可能であること	-				
作業・運用体制、留意事項	-					
作業体制 (必要人員・構成)	外業:2名 内業:1名	-				
日当たり作業可能量 (準備等含む作業時間)	2基/日(最大値)	点検対象物が終日点検のため利用可能である こと				
夜間作業の可否	不可	-				
利用形態 (リース等の入手性)	リース不可 ※現状、撮影(点検)、評価は当社で実施	-				
関係機関への手続きの必要性	・ドローン飛行許可申請 ・港湾管理者等への作業届	・条例で制限ある場合は、別途許可承認を取 得、海上保安庁へも確認が必要な場合あり				
解析ソフトの有無と必要作業 外注及び費用・期間等	解析ソフトはなし					
(独自で設定した項目) 留意事項	点検対象物の3Dモデルが存在すること	存在しない場合は、図面を提供いただくこと で、簡易モデルを作成対応も可能				
パソコン等動作環境						
0 S	Windows10					
メモリ	8GB以上					
必要なソフトウェア	Google Chrome、Microsoft Edge等、Webブ	ラウザツール全般				


3. 運動性能・計測性能

項目	性能	補足事項
運動性能		
構造物近傍での安定性	点検飛行中は、移動および撮影が全自動	-
狭小進入可能性能	狭小部は原則進入しない	対象物と離隔を保ち、光学20倍ズームカメラによる撮影ですべて対応
最大稼働範囲	機体と操縦者間の通信可能距離8km(最大 値)	周囲に障害物がある場合を除く
連続稼働時間	30分程度(実績値)	バッテリ交換により30分以上の連続稼働可能
自動制御の有無	離着陸、飛行・撮影すべて自動	事前に専用アプリケーションで3Dモデルを 用いて撮影個所を設定
(独自で設定した項目)	-	-
計測性能		
計測精度	0.5mm	撮影画角5mの場合で0.5mmの亀裂を画像から確認可能
位置精度	垂直: ±0.1m (メーカ公称値) 水平: ±0.1m (メーカ公称値)	RTKを使用、無風状態
色識別性能	無し	-
(独自で設定した項目)	-	-
その他		
操作に必要な資格の有無	なし(当社で実施)	-

4. 図面

5. 点検概要図、状況写真

① 事前準備作業

アプリケーションで以下を実施

- ・点検対象物の3Dモデルを読み込み
- ・ドローンの撮影位置を設定
- ・撮影個所(カメラ)の設定
- ⇒ドローンに読み込ませる自動飛行ファイル自動生成

② 撮影作業

現地で以下を実施

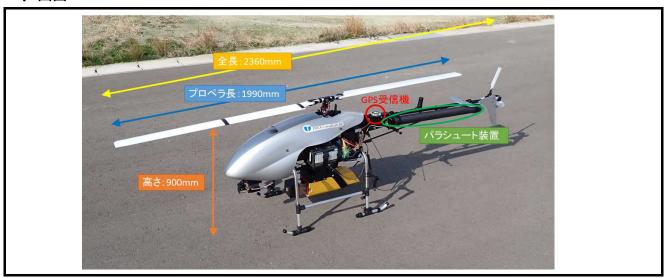
- ・自動飛行ファイルをドローンへインストール
- ・設定した点検個所の撮影(完全自動)
- ・リアルタイムで撮影される個所の確認

③ 評価及び点検結果

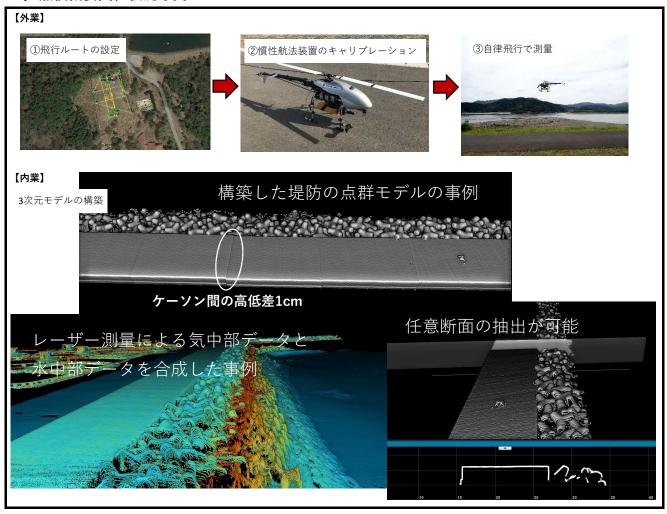
撮影画像から当社で点検個所の評価を実施 点検結果はWebアプリケーションで共有

- ・点検結果と撮影画像を一緒に確認
- ・同じ個所を撮影した過去の画像と並べて比較可能

特徴		作業効率	2,400% (当技術/従来技術)	現地測量作業:延長600m、 上据置型レーザースキャナと 当技術:6,000㎡+堤防側面/ 従来技術:6,000㎡/6h(据置 ※当技術、従来技術(据え置 も3D点群データを取得するだ はない。内業は作業効率の対	比較 1フライト15分 置型、堤防側面測量不可) 『き型レーザースキャナ)と ため、内業の内容・時間に差
付拟		経済性	<u>62.5円/㎡</u>	算定条件(外業及び内業): が無く、およそ1km以内に10 が確保できること。1日4フラ の場合。	Om四方程度の平坦な発着場
		(独自で設定した項目) 柔軟な対応	対象施設の点群モデルをを確認することが可能。	構築できるため、施設のどこに	こ変状が生じても以前の状態
連絡	先 等	いであ株式会社	環境調査事業本部 技	術開発室	
~- //·I	, o	西林健一郎 Tel	: 045-593-7602 E-m	ail: nkenichi@ideacon.co.	jp
技術	紹介URL(パンフレット等)	https://ideacon.	jp/technology/inet/vo	160/vol60_new04s.pdf	
技術	概要	取得・構築した3は一般的なマルチの運用が可能であ	Dモデルにより、形状 FコプタータイプのUA\ あるため、測量の効率化 気として、作業時間の短	レーザースキャナにより、・変状を把握するもの。へ! /と比較して積載可能重量がが図れる。 「縮、点密度の均一化、堤防・一ザースキャナと比較)	リコプタータイプのUAV 、大きく、長距離・長時間
活用	状況写真				
		,	当社実施範囲		
活用フロー		UAVへリに 点検の実		タの解析処理 詳モデルの構築 ・	施設点検 維持管理計画 補修設計 内業
	点検機械	0			
	当社の実施 操縦者	0			
	範囲 受託業務	0		0	Δ
	(該当○) 備考	外業、内業ともに当社で実施する。 2回目以降も同様の実施体制であり、点検機械のリース等は不可である。 △:当社への委託でも可能			


対象施設等							
	対象施設		施設	外郭施設	係留施設		その他
				0	(C	
	構造形式			重力式・矢板式・その他	重力式・矢	長板式・桟橋	
	点検部位・点検内容	水中部の測	量(点群デ・	ータ取得)、UAVヘリに	よる測量の	ため桟橋裏	面などは不可
概算費用			約150万円/24,000㎡(諸経費込み) (外業:90万円、内業:60万円)			平坦な施設の場合、15分のフライトで平均200,000㎡の測量が可能	
点検	実績	11件	港湾2件(国河川9件(国				
現有台数 1台		1台		基地住所	大阪府大阪	市	
追加機能等の開発予定 マニュピレータによる		ータによる					
特許	・NETIS、関連論文等			-			

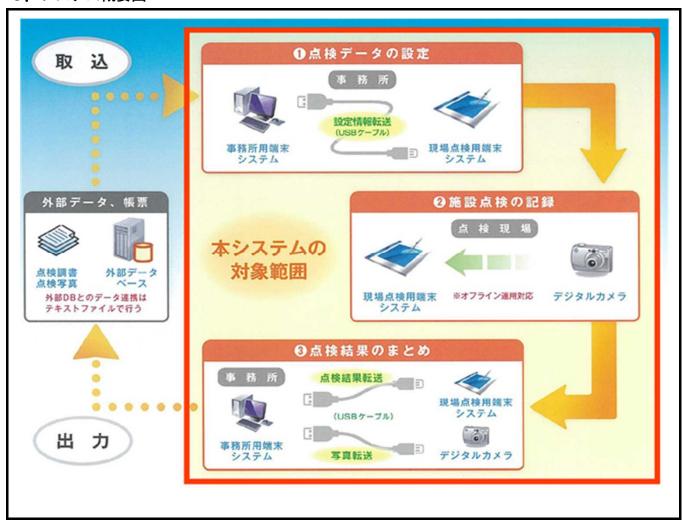
外形寸法・重量	L:2,360×W:400×H:900mm、重量8kg(動力)	用バッテリー含まず)				
(独自で設定した項目) 安全対策	UAVへリの位置を常時把握できるイリジウムビーコンを搭載 万一の墜落時のために自動射出パラシュートを搭載					
項目	適用条件	補足事項				
現場条件						
周辺条件	離着陸のために10m×10m程度の平面が必要 平面上空に障害物が無いこと	-				
作業範囲	飛行開始から25分以内に着陸場所に戻れる範 囲内(飛行開始から半径1km程度)	測量規模・現場条件によって移動可能距離が 変化 (測量に15分必要な場合、測量場所ま での片道は最大5分)				
安全面への配慮	航空法等の法令に則った運用	-				
現地への運搬方法	ワゴン車で運搬	-				
気象海象条件	降雨時は不可 風速10m/s以下	最大耐風速は15m/sであるが、安全を考慮 し、10m/sを基準とした				
(独自で設定した項目)	-	-				
作業・運用体制、留意事項	1	·				
作業体制	外業:2名					
(必要人員・構成)	内業:1名	-				
日当たり作業可能量 (準備等含む作業時間)	24,000㎡/日(標準値)	堤防の場合、延長距離2.4km程度 平坦な施設の場合は作業可能量増加				
夜間作業の可否	不可	-				
利用形態	リース不可					
(リース等の入手性)	調査・解析は当社で実施	-				
関係機関への手続きの必要性	海上保安部への作業許可申請、港湾管理者等 への手続	-				
解析ソフトの有無と必要作業 外注及び費用・期間等	測量データの解析処理を専用ソフトで当社実施、出力データは様々なソフトで利用可能	1日分のデータ処理費用約60万円 解析期間3日程度、データ量は2~4GB				
(独自で設定した項目)	-	-				
パソコン等動作環境	1	1				
0 S	Windows10					
メモリ	BGB以上					
必要なソフトウェア	インストール不要のフリービューワで提供可能					


3. 運動性能・計測性能

	項目	性能	補足事項
運動	性能		
	構造物近傍での安定性	自律飛行中は針路・姿勢を自動制御	障害物検知機能あり
	狭小進入可能性能	進入不可	-
	最大稼働範囲	飛行開始から25分以内に着陸場所に戻れる範囲内(飛行開始から半径1km程度)	測量規模・現場条件によって移動可能距離が変化(測量に15分必要な場合、測量場所までの片道は最大5分)
	連続稼働時間	カメラ搭載のみの場合50分 レーザー搭載時は25分(安全率考慮)	-
	自動制御の有無	離発着時以外は自動制御 (マニュアルフライトも可能)	事前に飛行ルートを設定
	(独自で設定した項目) 積載重量	最大積載重量16kg	-
計測	性能		
	計測精度	レーザーの測距精度(主に鉛直座標)±0.5cm 2cm以上の変状が検出可能(実績より記載)	
	位置精度	水平座標 ± 2.5cm	GPS衛星の航跡情報をもとに、測位座標を後 解析処理した場合の精度
	色識別性能	追加作業で可能	別途撮影した写真からRGB情報を抽出し、 点群データに付与可能(オプション)
	(独自で設定した項目) 高分解能	最大でおよそ7万点/秒の測量点 (下方向130°の範囲とした場合)	-
その	他		
	操作に必要な資格の有無	なし(当社で実施)	-

4. 図面

5. 点検概要図、状況写真



特徴	1)点検に必要な情報を現場用端末(タブレット)に集約することで、点検時に多数の資料を携帯せずに安全な点検作業が可能【安全性の向上】 2)タブレットのカメラ機能を利用した点検写真撮影や簡易な点検メモ入力により写真やメモが点検箇所に自動的に紐付けされるので、点検後の写真やメモの整理が容易【作業効率と経済性の向上】 3)現地で過去の点検結果や劣化度判定事例写真を参照できるので、精度の高い点検が可能【点検結果の品質の向上】					
連絡先等	一般財団法人港湾空港総合技術センター (SCOPE)建設マネジメント研究所ライフサイクルマネジメント戦略室兵頭武志 Tel: 03-3503-2803 E-mail: hyoudou@scopenet.or.jp JIPテクノサイエンス株式会社					
技術紹介URL(パンフレット等)	https://www.scopenet.or.jp/main/casport1/index.html					
技術概要	目視を中心とした日常点検や一般定期点検診断では、過去の点検結果との食い違いや不良個所の見落とし、経験不足による劣化度判定の迷い、煩雑な点検結果と写真の紐づけ作業等の課題があった。これらを解決すべく、本技術では点検前後の処理を行う事務所用端末(PC)と現場点検時の処理を行う現場用端末(タブレット)で構成されるシステム(アプリケーション)を開発し、作業の効率化や安全性、経済性、品質の向上を図った。本技術を利用することで、タブレットを使って現場で手軽に精度よく点検作業を行うことができ、点検結果の整理が効率的に実施できる。					
活用状況写真	事務所用端末 (パソコン) ■主な機能 ○点検前の処理 ・施設や点検項目の設定、点検位置作図 ○点検後の処理 ・点検結果の編集、写真の紐付け ・評価結果や補修概略コストの算定 ・帳票出力					

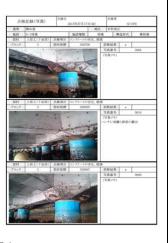
活用フ	п —		当	性の実施範	5囲					
				初期データ設定	事前 データ設定 内端末(バソコン) 内業	\	点検結果の整理 点検結果の整理 (タブレット) 外		点検結果の整理 内端末(バソコン) 内業	
	当社の実	初回		\triangle						
	施範囲	2回目以降		不要						
	(該当	備考	メールにて	入後は講習会問合せに対応 たは業者への	Ď.		行うことで	自前での運用	用が可能。ま	た、E
対象施	設等									
	対象施設		水域施設			外郭施設		係留施設 ○		他
	構造形式				-			ノ <u></u> 板式・桟橋		
概算費用			・システム2)機械経費・事務所用・現場用端3)調査費・初期デー	構築費(初期 維持費(年間 端末(Wind 末(Android タ入力(施語 の点検データ	引)10万円 owsパソコン lタブレット 殳の諸元や構	ィ)購入費:)購入費:約 賃造図の取り	約15万円 込み、部材	て、対象施	たりの調査費 設の規模や <i>7</i> 存は少ない。	入力数
点検実績		0件								
ライセンス数等の制限の有無		有 事務所用端末(パソコン)の追加1つ当たりの初期費用と年次利用料が必要 ただし、複数ライセンスの契約による割引あり								
追加機能等の開発予定			・変状図の作成支援機能の追加(変状のポンチ図作成等) ・小規模施設を対象とした点検項目リスト形式による簡易入力の追加							
特許・NETIS、関連論文等				武志ほか,係 回年次学術記					ンステムの開	発,土

項目	適用条件	補足事項				
現場条件						
作業範囲	タブレットによる点検作業においては、陸上 からのアクセスが可能な範囲、または小型船 舶による近接目視が可能な範囲	潜水を伴うような水中部の点検は適用外。 インターネット接続の場合は音声によるメ モ入力が可能。				
安全面への配慮	-	-				
(独自で設定した項目) 天候	タブレットによる点検作業において、雨天で は使用不可	雨天ではタブレットの操作に支障がある				
作業・運用体制、留意事項						
	パソコンによる初期データ入力に技師C:0.5 人/施設	-				
日当たり現場作業可能量 (準備等含む作業時間)	初期データ入力に2施設/日	エプロン幅30mで延長240m程度の直杭式 横桟橋を対象とした場合				
利用形態 (リース等の入手性)	試行利用の場合はタブレット貸出可能(ただ し、数に制限あり)。パソコンの貸出はなし	-				
関係機関への手続きの必要性	-	-				
解析ソフトの有無と必要作業 外注及び費用・期間等	-	-				
(独自で設定した項目)	-	-				
動作環境						
O S	1)事務所用端末(PC) Microsoft 日本語版 Windows 8.1 (32bit/64bit) 2)現場用端末(タブレット) Android OS 6.0以降	、または、Windows 10 (32bit/64bit)				
1)事務所用端末 (PC)メモリCPU,RAM (メモリ) は基本ソフトの動作環境に準じる2)現場用端末 (タブレット)CPU,RAM (メモリ) は基本ソフトの動作環境に準じる						
必要なソフトウェア	必要なソフトウェア 帳票を出力するために、Microsoft Excel 2013/2016/2019 (日本語版、32bit版) が必要					
(独自で設定した項目) その他要件	タブレットの画面サイズは10インチ以上が必要 パソコンとタブレットのデータ交換を行うため、USB経由でデータ通信を行うコネクタ及 びUSBケーブル、又はUSB OTG(On-The-Go)対応のUSBメモリが必要					

3. システム概要図

4. 表示画面等

- (1) 事務所用端末 (パソコン) の表示画面 (桟橋の例)
- 1)初期データ入力


施設の基本諸元

点検位置図等の設定

2)点検結果出力

劣化度、性能低下度一覧表

点検写真帳とメモ

(2) 現場用端末 (タブレット) の表示画面 (桟橋の例)

5. 概要図、状況写真

桟橋上部工(下面側)の点検状況

防波堤の点検状況

技術名

スマートフォンによる港湾施設の維持管理システム

特徴	1)利用者、地域に合わせた点検ネットワークの設定 2)点検データ登録と蓄積データの検索、帳票出力設定の簡便さ 3)施設被災時の気象条件の同期出力(オプション)			
連絡先等	株式会社 センク21 地域振興部 丹羽真 Tel:03-3667-1009 E-mail:niwa.makoto@senc21.jp			
技術紹介URL(パンフレット等)	http://senc21.jp/wp-content/themes/senc21/pdf/check-coast-sys.pdf			
技術概要	本システムは、WEBアプリとスマートフォン(以下「スマホ」)アプリから構成される。管理担当者自らが、港湾施設の日常点検や管理・利用点検及び災害点検の結果を現場で本システムに記録することで、予め設定した管理組織内の関係者に共有することができる。また、管理者がアクセスを許可した点検業務受託者や施設利用者等が点検を行いデータを登録することが可能であり、このシステムを通じて管理者と点検結果を共有することも可能となる。 登録されたデータは、データベース化されるため、施設毎に過去の事象を時系列で把握でき、日頃の維持管理に役立てることができる。また、オプション機能として被害発生時の気象海象情報と同期させ前後の気象海象情報を表示することも可能である。			
活用状況写真	では、			

			当社	実施軍	0囲										
				رد		港湾施設				蓄積データ			タの活用		
活用フロー				利用管理点検		理点点点点换検	確認・蓄積 内紫			老朽化評価	市前後票の作		票の作物で、大学のでは、たけのでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、たがのでは、大学のでは、大学のでは、たがのでは、たがのでは、たがのでは、たがのでは、たがのでは、たがのでは、たがのでは、たがでは、たがでは、たがでは、たがでは、たがでは、たがでは、たがでは、たが		
		初回		0		Δ		\triangle		\triangle	\triangle	\triangle	\triangle	\triangle	-
	当社の実施	2回目以降		\triangle										\triangle	
範囲(該当管理者、点検担当者のネットワークを構築した後は、対象施設の追加・削除を含め自前での運用が可能であった。アドレス変更等のネットワーク設定の変更については公公: 当社への委託可能						ある。	なお、	担当	者の追	加・変更、利用					
対象施設等			水域施設 外郭施設					係留施設					その他		
	対象施設					0			0				0		
	構造形式														
概算費用			 管理港湾数及び施設数 港湾施設点検システム(利用者ID100程度) ・システム構築費(初期費):250万円 ・システム維持費(年間):150万円 で理港湾数及び施設数 がば、ネットワーク参り 増加及びサーバーの規定 くなることから、シス費及び維持費は増加す 							- ク参加人数の - の規模が大き システム構築					
点検実績			2件 港湾・漁港2件(地方公共団体等2件):長崎県、高知県												
ライセンス数等の制限の有無			有 利用者ID100件以内(ID追加オプション有り)												
追加機能等の開発予定			スマホのOSバージョンアップに合わせたアプリの更新												
特許・NETIS、関連論文等			論文:長野晋平ほか,漁港点検システムの機能保全計画等老朽化対策への活用について,日本水産工学会学術講演会学術論文集,p.127-130, 2019.												

	項目	適用条件	補足事項					
現場	条件							
	作業範囲	使用するスマホの規格に依存	水中用ハウジング等を利用することにより、 水中(潜水)での使用も可能。					
	安全面への配慮	使用するスマホの規格に依存	耐衝撃カバー等で補強可能					
	(_{独自で設定した項目)} 天候等	使用するスマホの規格に依存	耐水性のスマホであれば豪雨、激浪時でも使用可能。高感度カメラ搭載のスマホであれば 夜間等でも使用可能。					
作業	・運用体制、留意事項	-						
	作業体制 (必要人員・構成)	現場施設点検:1名 点検結果の受信・検索、蓄積データの活用:1 名	-					
	日当たり現場作業可能量 (準備等含む作業時間)	点検施設が5施設/1港であれば、一日3港程度 の現場点検が可能	1施設(例:外郭・係留施設上面約60m2あたり)の点検所要時間は、10~20分					
	利用形態 (リース等の入手性)	点検結果受信:一般的なPC及びスマホの購入 現場施設点検:スマホあるいはタブレットの 購入	-					
	関係機関への手続きの必要性	不要	-					
	解析ソフトの有無と必要作業 外注及び費用・期間等 (独自で設定した項目) 被災時の利用	不要 施設被災時点の気象海況情報の同期出力には オプション契約が必要	- 気象海況情報の取得蓄積費用 30万円/県・年					
動作	└ ·環境(点検データ管理用W							
	O S	記載のウェブブラウザソフトが使用可能なOS						
	メモリ	「必要なソフトウェア」記載のウェブブラウザソフトが使用可能なメモリ						
必要なソフトウェア ウェブブラウザソフト(Google Chrome、Firefox、Microsoft Edge、Apple Safa バージョン ※Microsoft IE11での使用は推奨していません。								
点核	(独自で設定した項目) 食アプリ用スマートフォン 又はタブレット	iPhone・iPad:iOS 8.0以上 Android:Android4.4以上 カメラ機能(必須)、GPS機能(推奨)						

3. システム概要図

4. 表示画面等

点検データの蓄積と閲覧

点検データのデータベース化

- 登録された点検データが蓄積される。
- ・港名、状況内容、点検期間等、様々な 項目で検索することが可能。
- ・管理者としてコメントの追加が可能。

帳票形式での出力

- 登録された点検データを帳票形式に出 力することができる。
- ・ 印刷し、報告書等に利用できる。

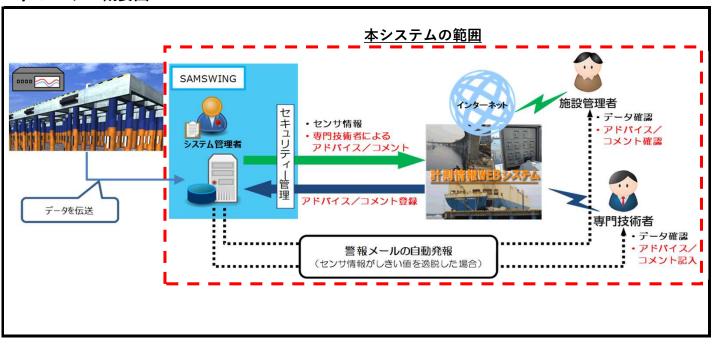
点検データの蓄積と閲覧

施設被災時の気象海況情報の表示(オプション機能)

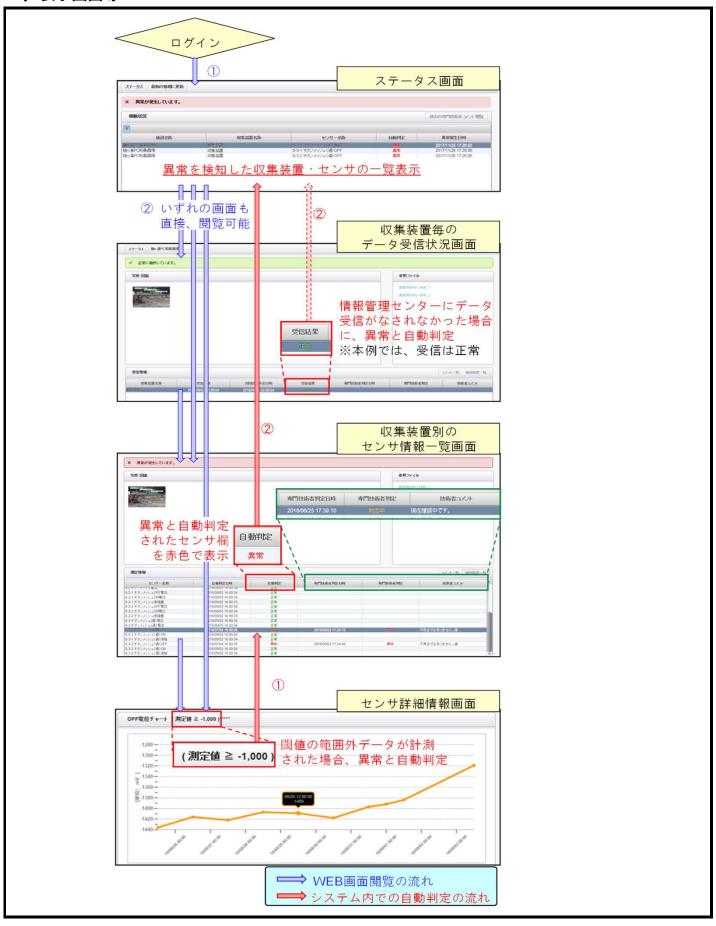
- ・災害点検において登録された推定被災時刻から、その時刻周辺の気象海況 情報を取得し、点検データと共に表示させることができる。
- 推定被災時刻前後の最大降水量、最大有義波高が表示される。

5. 概要図、状況写真

技術名


港湾構造物の維持管理支援システム「SAMSWING(サムシング)」

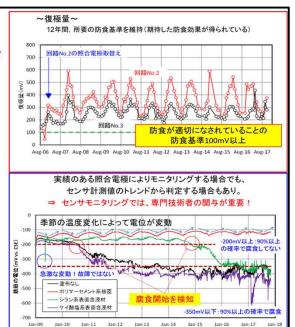
1)現状および過去に取得したセンサ情報と専門技術者のコメントをいつでき 2)センサ情報が閾値を逸脱した場合に、施設管理者および専門技術者宛に 特徴 を発報する。 3)センサ情報に対する専門技術者の判定結果および、その対処方法に対する 画面上に表示する。								
連絡先等	東亜建設工業株式会社 技術研究開発センター新材料・リニューアル技術グループ 網野 貴彦 Tel:045-503-3741 E-mail:t_amino@toa-const.co.jp							
技術紹介URL(パンフレット等)	https://www.toa-const.co.jp/tech/sensor_aided_maintenance_system_with_information_technology/							
技術概要	本システムは、構造物に設置されたセンサの連続的な計測情報や専門技術者による対応方針等のコメントをインターネットを介して施設管理者に提供するシステムである。 ステータス画面(専門技術者が各センサに設定した閾値を逸脱したセンサのみをリスト表示させる機能)の確認だけで構造物の状態を把握でき、施設管理者の維持管理業務の負担軽減に資する。また、閾値を逸脱したセンサ情報に対する専門技術者の判定結果・コメントもWEB画面上に表示させる機能も備え、施設管理者は安心して維持管理業務を行うことができる。なお、センサ情報が閾値を逸脱した場合、自動で施設管理者に警報メールを発報する機能も備える。							
活用状況写真	ステータス画面を一目見れば、異常の有無をすぐに確認できる 異常を検知したセンサがある場合のステータス画面 異常を検知したセンサがない場合のステータス画面 異常を検知したセンサのみのリストを表示 ※何も表示されない ※施設管理者は、基本的にステータス画面のみを定期的に確認すればOK							


			当社実施範囲										
活用フロー			伝送装置の設置	センサ・データ 外業	等のデータベース登録・センサ	システム稼働確認※内業		取得データの	報メール常値の検出	検コメント入力専門技術者による	理・報告書作成内		
		初回	対	象外	0	0		0	0		\triangle		
	当社の実施	2回目以降	対針	象外	0	0		0	0	Δ	Δ		
	範囲(該当	備考		※WEB画面上の更新状況および警報メールの発報状況を確認する作業 △:当社への委託でも可能									
対象	施設等									6.1			
	対象施設		水域	施設	外郭				施設 	その他 〇			
	構造形式										ン		
概算費用			費用算定条件 ・計測対象施設数:10件程度 ・1施設当たりに設置するセンサ数:50個程度を想定 ○データベース構築、システム稼働確認費:100万円(初回のみ) ○システム維持・管理費:200万円/年(専門技術者に係る費用は除く)								が50 記		
点検実績			1件 港湾1件(国0件、地方公共団体等0件、民間1件)										
ライセンス数等の制限の有無			有 1施設あたりの利用者15件以内										
追加機能等の開発予定			なし										
特許・NETIS、関連論文等			論文:網野貴彦他, 桟橋の点検診断の高度化のためのセンサモニタリング技術の導入, 土木学会論文集B3(海洋開発), Vol.74, No.2, p.l_13-l_18, 2018								L木		

項目	適用条件	補足事項					
現場条件							
作業範囲	-	当技術は、現地に設置済みのセンサ情報を閲					
安全面への配慮	-	覧するサービスであり、センサ及び回収装 置、伝送設備等並びにその設置作業は、対象					
(独自で設定した項目)	-	外である。					
作業・運用体制、留意事項							
(必要人員・構成)	構造物情報・センサ等のデータベース構築作業:3名程度	-					
	1施設あたり5~30分程度の内業で日常点検又 は定期点検の一部に代替可能。	-					
利用形態	当社から施設管理者ヘシステム使用権(ログ	サムシングの販売およびリースは想定してい					
(リース等の入手性)	インIDとパスワード)を付与	ない					
関係機関への手続きの必要性	-	-					
解析ソフトの有無と必要作業 外注及び費用・期間等	-	センサ情報の表示のためにデータ解析を伴う 場合には、別途解析ソフトが必要					
(独自で設定した項目)	 1) 鋼材の電位 2) 塩分浸透センサ 3) ペトロラタム被覆防食による鋼材防食状態 4) 温度・湿度等の環境情報 	 電気防食工法の効果確認、鋼材腐食開始時期の判定 コンクリート中の塩分浸透状況 ペトロラタム被覆防食の劣化状況 					
動作環境							
0 S	OSには依存しない。「必要なソフトウェア」記 を搭載したPC、スマホ、タブレット等	記載のウェブブラウザソフトが使用可能なOS					
メモリ	「必要なソフトウェア」記載のウェブブラウザソフトが使用可能なメモリ						
必要なソフトウェア	ウェブブラウザソフト(Microsoft IE、Google Chrome、Firefox、Microsoft Edge、Apple Safari)最新バージョン						
(独自で設定した項目)	-						

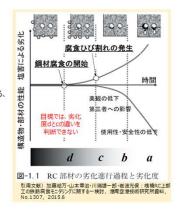
3. システム概要図

4. 表示画面等



5. 概要図、状況写真

【SAMSWINGの適用事例】


●民間のPC桟橋に適用した電気防食工法モニタリング

●照合電極による鉄筋電位モニタリング (コンクリート中の鉄筋腐食の開始時期の判定)

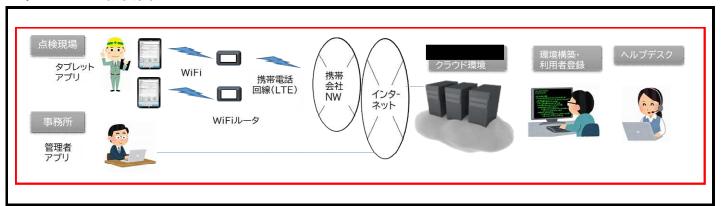
【センサモニタリングの活用により、従来の維持管理と変わる点】

- 1) 目視中心の事後保全型から予防保全型への移行
- → 外観上の変状がない劣化度dでは判定できなかった劣化状態も把握可能!
- ➡ 迅速な対処の検討・実施が可能(劣化を最小限に食い止め、効果的な補修提案)
- ➡ 鋼材腐食を最小限に留めた維持管理の実現により、LCC低減にも繋がる。
- 2) 複数の施設を管理する港湾管理者が現地に赴く頻度や点検コストの縮減
 - ➡ 特に、定期点検診断における計測を伴う調査 (塩化物イオン量調査やはつり調査など) に係る、 諸関係機関との調整、仮設足場の設置撤去、調査自体の手間、 調査結果の整理等を省略できる。 調査時期にも左右されない (台風シーズンでも、点検 [データ取得] が可能)。
- 3) 容易にアクセスできない目視が難しい箇所や不可視部分の点検診断が可能
 - ➡ 目視点検の一部代用としての効果
- 4) 定量的なデータに基づく高度な点検診断(主に評価)の実現
- → 構造物 (部材) の劣化予測や最適な補修提案に必要なデータとしての活用

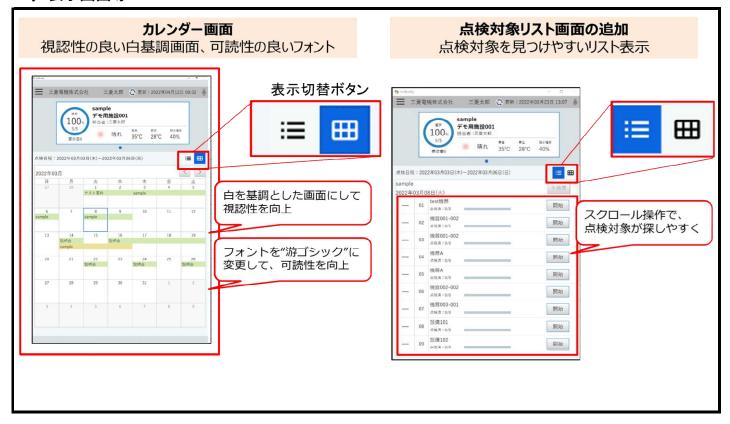
【SAMSWING活用により期待される港湾施設管理者の負担軽減効果】

- ・日々蓄積される膨大なセンサ情報を自動で記録管理
 - → いつでも、知りたい期間のリアルタイムかつ過去のセンサ情報を確認できる
 - ⇒ 本技術 (SAMSWING) では、過去の設計図書、維持管理記録、補修履歴等も保管できる
- ・変状が生じた施設や部位の特定作業の省力化
 - ⇒ センサ情報一覧表示と、異常の有無を色で識別により、変状が発生した部位を即座に把握可能
 - 専門技術者コメントを確認することで、迅速に対処方法の検討に着手可能
- ・港湾管理者の疑問や不安に対し短時間かつ的確にサポートできる体制の構築システムとしての利用
 - ⇒ 港湾管理者と専門技術者の連携強化により、安心かつ安全な維持管理体制の提供
- ・ 本システム導入後に異なるセンサを用いることになった場合でも、常に同じWEB画面上で情報確認が可能
 - → 施設管理者の交替が生じても、引継ぎが容易
- ・厳重な情報セキュリティー管理 (関係者のみの情報開示)

士	绀	Ø
1X	術	10

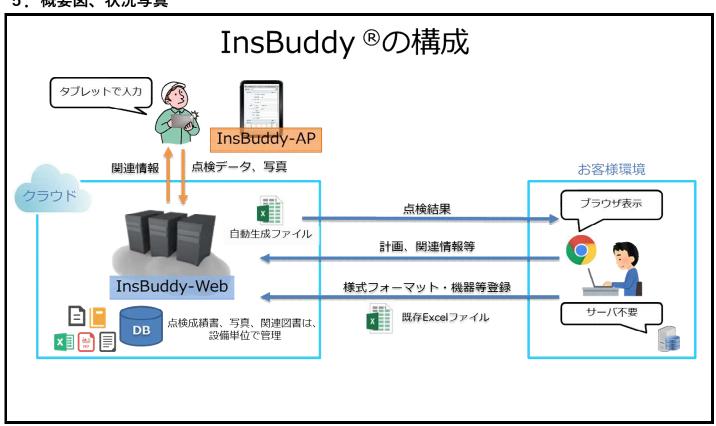

三菱電機点検サポートサービスInsBuddy

特徴	1)必要なデータをすべてペーパレス化 2)点検データの整理が容易 3)どこからでも点検計画作成・共有・確認が可能 4)成績書 ^{※1} の簡単入力、成績書・報告書 ^{※2} は自動生成 ※1 点検項目(設備・部材)ごとの点検結果 ※2 成績書の取りまとめ(主に施設毎の取りまとめ)						
連絡先等	三菱電機株式会社 社会システム第二部 板山勝典 Tel:03-3218-2633 E-mail:Insbuddy@rc.MitsubishiElectric.co.jp						
技術紹介URL(パンフレット等)	https://www.mitsubishielectric.co.jp/society/insbuddy/						
技術概要	本システムは、クラウドシステムとタブレット端末を活用して、点検業務のDX化を支援するサービスです。点検結果の記録方法は紙への記入からタブレットへの入力になり、点検業務に関する各種データ(点検計画、点検結果等)はクラウドで管理されます。そのため、後日必要なデータを容易に検索・整理することができ、複数の部署(場所)でそれらデータの閲覧・活用が可能となります。また、成績書・報告書を自動生成する、前回点検結果の成績書を表示する、といった様々な機能により、これまでの点検業務に比べ、手間削減などによる効率化、点検結果記載ミス・漏れの防止・削減などによる品質向上が期待できます。						
活用状況写真	(3所代) 担当者が無人的に人員をお価 緊急等でも担当者がいないと の意識を表現をである。						


			当社実施軍	范囲										
				。 第施設				蓄積データの活用						
活用フロー			ワークの構築システムネット	利用管理	災害点人		確認・蓄積の分割を	>	老朽化評価	災害前後評価	帳票の作成	周辺検索	気象情報表示	
			内業		外業		内業	•					内業	
		初回	0		\triangle		\triangle				\triangle			
	当社の実施	2回目以降												
<u>++</u> 4-	節囲(該当	備考	管理者、点検担当者をユーザ登録した後は、講習会による操作方法の周知を行い、対象施設および点検項目の追加・削除を含め自前での運用が可能である。なお、担当者の追加・変更、利用アドレス変更等のユーザ情報の登録・変更は当社に依頼が必要です。 △:当社への委託可能											者の追加・変
刈家	施設等		水域	 施設		外郭	施設			係留	施設	,		その他
	対象施設			0		0			0					
	構造形式				重力式・矢板式・その他 ※陸上からの目視調査に限る			重力式・矢板式・桟橋			・桟橋	臨港多		
概算費用			港湾施設点検システム(利用者ID、5人分を想定) ・初期登録料(初年度のみ):200万円 ・アカウント料(月額):1万円/1ID ※最低5IDから契約可能							・初期登録料は初回のみ発生。 クラウドサーバ上にユーザ環境 を生成します。 ・アカウント料は点検員の同時 アクセス数分のID契約が必要で す。				
点検実績			3件	3件 その他土木構造物3件(国3件):関東・東北・中部地方整備局										
ライセンス数等の制限の有無			有 利用者ID最低5IDから(ID追加オプション有り)											
追加機能等の開発予定			・ユーザニーズおよびWindowsOSバージョンアップに合わせたアプリの更新 ・iOS対応											
特許・NETIS、関連論文等			点検サポートサービス InsBuddy(インスバディ) NETIS登録番号:KT-190142-A											

	項目	適用条件	補足事項						
現場	条件								
	作業範囲	使用するタブレット端末の規格に依存	WiFi、携帯電波の届かない地下室などでも利用可能。						
	安全面への配慮	使用するタブレット端末の規格に依存	耐衝撃カバー等で補強可能。ショルダーベルト等利用により点検作業・移動時は両手を塞がず携帯可能。						
	(独自で設定した項目) 天 候等	使用するタブレット端末の規格に依存	耐水性のタブレット端末でなくても防水カ バー等を利用することにより豪雨、激浪時で も使用可能。						
作業	・運用体制、留意事項	,							
	作業体制 (必要人員・構成)	点検員(外業):1名~ 管理者(内業):1名~	-						
	日当たり現場作業可能量 (準備等含む作業時間)	点検対象が2施設/1港であれば、一日2港程度 の現場点検が可能	・1施設(例:荷役機械機械設備関係)の点 検表が23枚の場合の所要時間は70分程度と 想定 ・現場への往復・港湾間の移動は片道60分と し、1日180分程度の移動時間を想定 ・現場点検結果の報告書への転記作業が不要 になることで、作業の効率化を実現						
	利用形態 (リース等の入手性)	点検員(外業): 市販タブレットPCの購入またはリース、レンタル 管理者(内業): 現状利用中のPCで利用可能	-						
	関係機関への手続きの必要性	不要	-						
	解析ソフトの有無と必要作業 外注及び費用・期間等	不要	-						
	(独自で設定した項目) WiFi等電波不通箇所での利用	WiFiなど電波環境の悪いエリアでも安心して ご利用いただけます。	WiFi電波通信可能エリアに移動した時に自動 で点検データがアップロードされます。						
動作環境(点検データ登録用タブレット端末)									
	0 S	Windows10							
	メモリ	8 GB以上							
	必要なソフトウェア	Excel2013以上、GoogleChrome77以上							
	(独自で設定した項目) 点検データ登録用 タブレット端末	CPU:インテルPentiumGold4415以上 画面解像度:FullHD以上 内臓カメラ:HDカメラ(100万画素以上)、全面カメラ、背面カメラ							

3. システム概要図


4. 表示画面等

4. 表示画面等

5. 概要図、状況写真

